In response to the rapid and dynamic changes in the economic environment, companies must improve their processes to maintain competitiveness. This includes enhancing their intellectual capital, with particular emphasis on effective onboarding processes, which play a crucial role in integrating new employees and retaining talent. This enhances the value of the organization’s intellectual capital and emphasizes onboarding—the training and integration of new employees—whose proper functioning impacts staff retention. Drawing on both Hungarian and predominantly foreign literature, we highlight onboarding processes and examine their implementation in Hungarian companies of various sizes. The research employed a mixed-method approach, combining semi-structured interviews and questionnaires. In-depth interviews were conducted with HR leaders from 13 Hungarian organizations to explore the existence of mentoring programs. Additionally, 161 employees across Hungary completed questionnaires, which examined their perspectives on onboarding processes and the relationship between mentoring programs and company size. We analyzed the data using chi-square tests to assess the strength of these relationships. While all large companies in our sample had formal mentoring programs, smaller companies displayed more variability, with some relying on informal or ad-hoc onboarding processes. Based on these results, we identified several key areas for improvement in onboarding processes. These include enhancing the structure of feedback interviews, ensuring more comprehensive communication channels, and strengthening mentoring programs across companies of all sizes. By addressing these gaps, companies can improve employee retention, engagement, and overall integration during the onboarding process, contributing to a more stable and motivated workforce.
This study evaluates the effectiveness of Indonesia's defense industry policy from 2018 to 2023, focusing on PT Pindad, a pivotal state-owned defense enterprise. Using a Balanced Scorecard (BSC) framework, the study assesses PT Pindad’s performance across financial, customer, internal process, and learning and growth perspectives. The findings reveal strengths in financial stability (Current Ratio at 115.57% in 2023) and customer satisfaction, but challenges in Return on Investment (ROI), which fell from 6% in 2022 to 5.46% in 2023, signaling a need for further internal improvements. A mediation analysis using Shape-Restricted Regression indicates that Research and Development (R&D) serves as a crucial mediator, enhancing the impact of strategic alliances and technology transfer on PT Pindad’s self-reliance, with R&D showing a positive coefficient of β = 0.53 (p < 0.01). The systematic literature review complements these findings, underscoring the role of technology transfer, human capital development, and strategic partnerships as essential components for strengthening PT Pindad’s self-reliance and global competitiveness. Recommendations are made to enhance policy effectiveness by fostering robust technology transfer mechanisms, increasing investment in human capital, and expanding strategic partnerships. This research contributes to the literature on defense industry policies by providing a comprehensive evaluation framework that informs future policy decisions.
The rapid growth of portable electronics and electric vehicles has intensified the global demand for high-performance energy storage devices with superior power density, energy density, and long cycle life. Among transition metal oxide-based electrode materials with potential for energy storage, we report the development of MnO2–V2O5 nanocomposite electrodes for supercapacitor applications. Pure MnO2 and V2O5 were successfully fabricated via a simple and economical sol–gel method, while (MnO2)x–(V2O5)1−x (x = 1, 0.75, 0.50, and 0) nanocomposites were fabricated through an ex situ method. Analytical techniques, including X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and UV-visible spectroscopy, were employed to investigate the structural, morphological, and optical properties of the electrodes. Furthermore, the electrochemical properties were systematically analysed using cyclic voltammetry, galvanostatic charge–discharge measurements, and electrochemical impedance spectroscopy. The (MnO2)0.75–(V2O5)0.25 nanocomposite demonstrated a remarkable specific capacitance of 666 F/g at a current density of 0.5 A/g in 1 M KOH electrolyte. Additionally, the electrode material exhibited an energy density of 23 Wh/kg and a power density of 450 W/kg, while maintaining a capacitance retention of 95% after 1,500 cycles. The incorporation of V2O5 boosted the conductivity and significantly optimised the number of lattice defects. This work substantially reinforces the importance of metal oxide-based nanocomposites for future energy storage devices.
Brain tumors are a primary factor causing cancer-related deaths globally, and their classification remains a significant research challenge due to the variability in tumor intensity, size, and shape, as well as the similar appearances of different tumor types. Accurate differentiation is further complicated by these factors, making diagnosis difficult even with advanced imaging techniques such as magnetic resonance imaging (MRI). Recent techniques in artificial intelligence (AI), in particular deep learning (DL), have improved the speed and accuracy of medical image analysis, but they still face challenges like overfitting and the need for large annotated datasets. This study addresses these challenges by presenting two approaches for brain tumor classification using MRI images. The first approach involves fine-tuning transfer learning cutting-edge models, including SEResNet, ConvNeXtBase, and ResNet101V2, with global average pooling 2D and dropout layers to minimize overfitting and reduce the need for extensive preprocessing. The second approach leverages the Vision Transformer (ViT), optimized with the AdamW optimizer and extensive data augmentation. Experiments on the BT-Large-4C dataset demonstrate that SEResNet achieves the highest accuracy of 97.96%, surpassing ViT’s 95.4%. These results suggest that fine-tuning and transfer learning models are more effective at addressing the challenges of overfitting and dataset limitations, ultimately outperforming the Vision Transformer and existing state-of-the-art techniques in brain tumor classification.
We studied the role of industry-academic collaboration (IAC) in the enhancement of educational opportunities and outcomes under the digital driven Industry 4.0 using research and development, the patenting of products/knowledge, curriculum development, and artificial intelligence as proxies for IAC. Relevant conceptual, theoretical, and empirical literature were reviewed to provide a background for this research. The investigator used mainly principal (primary) data from a sample of 230 respondents. The primary statistics were acquired through a questionnaire. The statistics were evaluated using the structural equation model (SEM) and Stata version 13.0 as the statistical software. The findings indicate that the direct total effect of Artificial intelligence (Aint) on educational opportunities (EduOp) is substantial (Coef. 0.2519916) and statistically significant (p < 0.05), implying that changes in Aint have a pronounced influence on EduOp. Additionally, considering the indirect effects through intermediate variables, Research and Development (Res_dev) and Product Patenting (Patenting) play crucial roles, exhibiting significant indirect effects on EduOp. Res_dev exhibits a negative indirect effect (Coef = −0.009969, p = 0.000) suggesting that increased research and development may dampen the impact of Aint on EduOp against a priori expectation while Patenting has a positive indirect effect (Coef = 0.146621, p = 0.000), indicating that innovation, as reflected by patenting, amplifies the effect of Aint on EduOp. Notably, Curriculum development (Curr_dev) demonstrates a remarkable positive indirect effect (Coef = 0.8079605, p = 0.000) underscoring the strong role of current development activities in enhancing the influence of Aint on EduOp. The study contributes to knowledge on the effective deployment of artificial intelligence, which has been shown to enhance educational opportunities and outcomes under the digital driven Industry 4.0 in the study area.
The MDA-MB-231 cell line is derived from triple-negative breast cancer (TNBC), representing one of the most aggressive forms of breast cancer. Innovative therapeutic strategies, including s targeted therapies using nanocarriers, hold significant promise, particularly for difficult-to-treat cancers such as TNBC. Nanoparticles have transformed the medical field by serving as advanced drug delivery systems for cancer treatment. They play a critical role in overcoming the drug resistance often associated with cancer therapies. When utilized as drug delivery vehicles, nanoparticles can specifically target cancer cells and effectively reduce or eliminate multidrug resistance. Among them, chitosan-coated magnetic nanoparticles (MNPs) have been widely explored for the loading and controlled release of various anticancer agents. In this study, we evaluated the effects of dexamethasone-loaded chitosan-coated MNPs on MDA-MB-231 cell lines. Fourier transform infrared spectroscopy and scanning electron microscopy were employed to verify the successful loading of dexamethasone onto the nanoparticles. To assess cytotoxicity, empty nanoparticles, free drug, and drug-loaded nanoparticles were tested on the cells. The results indicated that empty nanoparticles exhibited no toxic effects. The IC50 value of the free drug was 123 µg/mL, while the IC50 value of the drug-loaded nanoparticles was significantly lower, at 63 µg/mL. These findings confirmed the successful conjugation of dexamethasone to the chitosan-coated MNPs, demonstrating substantial cytotoxic effects on breast cancer cells. Although dexamethasone has been reported to exhibit both tumor-suppressive and pro-metastatic effects, its specific impact on TNBC warrants further investigation in future studies.
Copyright © by EnPress Publisher. All rights reserved.