This study examined the impact of aluminium doping on the structural, electrical, and magnetic properties of Li(0.5)Co(0.75)AlxFe(2−x)O4 spinel ferrites (x =0.15 to 0.60). The samples were synthesised using the sol-gel auto-combustion technique, and they were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), dielectric measurements, and vibrating sample magnetometry (VSM). All samples possessed a single-phase cubic spinel structure with Fd-3m space group, according to XRD analyses. SEM images showed the creation of homogeneous particles with an average size of about 21 nm. All samples had spinel ferrite phases, confirmed from FTIR spectra. DC electrical conductivity studies showed that the conductivity increased with increasing aluminium content up to x = 0.45 before dropping at x = 0.60. The maximum saturation magnetization value was found at x = 0.45, according to VSM measurements, which demonstrated that the magnetic characteristics were strongly correlated with the amount of aluminium.
The need for global energy conservation has become more urgent because of the negative effects of excessive energy use, such as higher fuel consumption, greater environmental pollution, and depletion of the ozone layer. There has been a significant increase in the demand for central and high-capacity household air conditioning systems in Muscat in recent years. The need for this is influenced by factors such as arid climate, increasing temperatures, air pollution, and population increase. As a result, there has been a significant increase in electricity use, putting a strain on power resources. To tackle this difficulty, the incorporation of solar collectors as supplementary thermal compressors in air conditioning systems offers a chance to utilise renewable energy sources. The objective of this hybrid technique is to enhance the effectiveness of cooling systems, hence minimising the need for electricity and lowering the release of environmental pollutants.
The debate on relocating Indonesia’s national capital from Jakarta stems from critical issues such as overpopulation, social inequality, environmental degradation, and natural disaster risks. These challenges highlight the need to reassess Jakarta’s viability as the nation’s administrative center. This study evaluates Indonesia’s readiness to address the complexities of relocation by analyzing Jakarta’s socio-economic, political, cultural, and geographical conditions. Using a systematic literature review (SLR) with a qualitative approach, the research explores key questions: Do Jakarta’s conditions necessitate relocation? What challenges might arise from the move? How prepared is Indonesia to tackle these challenges? The SLR process includes defining questions, sourcing literature from reputable databases, applying inclusion/exclusion criteria, and synthesizing data for analysis. Findings reveal Jakarta’s multifaceted challenges, including social disparities, environmental degradation, disaster risks, and governance issues, which emphasize the urgency of considering relocation. However, the study also identifies significant hurdles, such as high costs, logistical complexities, potential social conflicts, and environmental risks at the new capital site. Relocating the capital is a strategic and complex undertaking that requires meticulous planning. Indonesia must weigh Jakarta’s current issues, address potential relocation challenges, and ensure readiness for risk mitigation and sustainable development. Comprehensive and thoughtful planning is essential to achieve a successful and balanced transition.
The COVID-19 pandemic has instigated global lockdowns, profoundly altering daily life and resulting in widespread closures, except for essential services like healthcare and grocery stores. This scenario has notably intensified mental health challenges, particularly among children and adolescents. Influenced by a myriad of factors including developmental stages, educational backgrounds, existing psychiatric disorders, and socioeconomic status, the pandemic’s impact extends beyond the immediate health crisis. This paper critically examines the multifaceted effects of the pandemic on mental and physical health across various age groups. It highlights the increased incidence of stress, anxiety, and depression, underscoring the pandemic’s deep psychological footprint. Additionally, the paper explores the societal implications, from altered family dynamics and educational disruptions due to the shift to online learning, to workplace transformations. These changes have led to a mix of adaptive responses and adverse effects, including heightened domestic tensions and mental health issues. The paper also delves into the ethical challenges faced by medical professionals during this crisis, balancing urgent patient care with ongoing medical research and mental health considerations. This analysis aims to provide a comprehensive understanding of the COVID-19 pandemic’s extensive impact on health and society, emphasizing the importance of addressing mental health as a crucial component of the response strategy.
Zinc oxide (ZnO) hollow spheres are gaining attention due to their exceptional properties and potential applications in various fields. This study investigates the impact of different zinc precursors Zinc Chloride (ZnCl2), Zinc Nitrate [Zn(NO3)2], and Zinc Acetate [Zn(CH3COO)2] on the hydrothermal synthesis of ZnO hollow spheres. A comprehensive set of characterization techniques, including Field Emission Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), Thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analysis, was utilized to assess the structural and morphological features of the synthesized materials. Our findings demonstrate that all samples exhibit a high degree of crystallinity with a wurtzite structure, and crystallite sizes range between 34 to 91 nm. Among the different precursors, ZnO derived from Zinc Nitrate showed markedly higher porosity and a well-defined mesoporous structure than those obtained from Zinc Acetate and Zinc Chloride. This research underscores the significance of precursor selection in optimizing the properties of ZnO hollow spheres, ultimately contributing to advancements in the design and application of ZnO-based nanomaterials.
Copyright © by EnPress Publisher. All rights reserved.