Given the eclectic and localized nature of environmental risks, planning for sustainability requires solutions that integrate local knowledge and systems while acknowledging the need for continuous re-evaluation. Social-ecological complexity, increasing climate volatility and uncertainty, and rapid technological innovation underscore the need for flexible and adaptive planning. Thus, rules should not be universally applied but should instead be place-based and adaptive. To demonstrate these key concepts, we present a case study of water planning in Texas, whose rapid growth and extreme weather make it a bellwether example. We review historic use and compare the 2002, 2007, 2012, 2017 and 2022 Texas State Water Plans to examine how planning outcomes evolve across time and space. Though imperfect, water planning in Texas is a concrete example of place-based and adaptive sustainability. Urban regions throughout the state exhibit a diversity of strategies that, through the repeated 5-year cycles, are ever responding to evolving trends and emerging technologies. Regional planning institutions play a crucial role, constituting an important soft infrastructure that links state capacity and processes with local agents. As opposed to “top-down” or “bottom-up”, we frame this governance as “middle-out” and discuss how such a structure might extend beyond the water sector.
Renewable energy is gaining momentum in developing countries as an alternative to non-renewable sources, with rooftop solar power systems emerging as a noteworthy option. These systems have been implemented across various provinces and cities in Vietnam, accompanied by government policies aimed at fostering their adoption. This study, conducted in Ho Chi Minh City, Vietnam investigates the factors influencing the utilization of rooftop solar power systems by 309 individuals. The research findings, analyzed through the Partial least squares structural equation modeling (PLS-SEM) model, reveal that policies encouragement and support, strategic investment costs, product knowledge and experience, perceived benefits assessment, and environmental attitudes collectively serve as predictors for the decision to use rooftop solar power systems. Furthermore, the study delves into mediating and moderating effects between variables within the model. This research not only addresses a knowledge gap but also furnishes policymakers with evidence to chart new directions for encouraging the widespread adoption of solar power systems.
Transportation projects are crucial for the overall success of major urban, metropolitan, regional, and national development according to their capacity by bringing significant changes in socio-economic and territorial aspects. In this context, sustaining and developing economic and social activities depend on having sufficient Water Resources Management. This research helps to manage transport project planning and construction phases to analyze the surface water flow, high-level streams, and wetland sites for the development of transportation infrastructure planning, implementation, maintenance, monitoring, and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. A case study was carried out using the Arc Hydro extension within ArcGIS for processing and presenting the spatially referenced Stream Model. Geographical information systems have the potential to improve water resource planning and management. The study framework would be useful for solving water resource problems by enabling decision makers to collect qualitative data more effectively and gather it into the water management process through a systematic framework.
Fiscal decentralization is one of the policy implementations of regional autonomy, which authorizes local governments to manage their local finances independently. However, with the evolution of the times and the dynamics that are taking place, the application of fiscal decentralization worldwide is changing at each time of year. Therefore, it is necessary to investigate fiscal decentralization research temporarily over the course of four decades. The study aims to explain the development of research on fiscal decentralization over a period of four decades. This research integrates Scopus database to offer a thorough conceptual and structural overview of the field by integrating bibliometric approaches and content analysis. The research procedure begins with the determination of the scope of the research, the inclusion and exclusion criteria for the selection process, the collection of data on Publish or Perish (PoP), and the execution of bibliometric analysis on VosViewer. The research shows that the type of journal with the highest productivity has sub-topics of economy, public service, development, and environmental. The development of fiscal decentralization research has a positive upward trend and most of the top-ranked journals indicate that fiscal decentralization has links and influences with other variables. It is apparent that the most often keywords emerged and studied in the research on fiscal decentralization are related to efficiency, measure, role, degree, growth, and fiscal federalism. Meanwhile, the least frequent keywords are related to poverty and inequality, health outcome, environmental pollution, Latin America, South Africa, fiscal autonomy, corruption, OECD country, determinant, and public sector. These keywords are the future lines of research that may be used for future research on the topic of fiscal decentralization.
Liquid Metal Battery (LMB) technology is a new research area born from a different economic and political climate that has the ability to address the deficiencies of a society where electrical energy storage alternatives are lacking. The United States government has begun to fund scholarly research work at its top industrial and national laboratories. This was to develop Liquid Metal Battery cells for energy storage solutions. This research was encouraged during the Cold War battle for scientific superiority. Intensive research then drifted towards high-energy rechargeable batteries, which work better for automobiles and other applications. Intensive research has been carried out on the development of electrochemical rechargeable all-liquid energy storage batteries. The recent request for green energy transfer and storage for various applications, ranging from small-scale to large-scale power storage, has increased energy storage advancements and explorations. The criteria of high energy density, low cost, and extensive energy storage provision have been met through lithium-ion batteries, sodium-ion batteries, and Liquid Metal Battery development. The objective of this research is to establish that Liquid Metal Battery technology could provide research concepts that give projections of the probable electrode metals that could be harnessed for LMB development. Thus, at the end of this research, it was discovered that the parameter estimation of the Li//Cd-Sb combination is most viable for LMB production when compared with Li//Cd-Bi, Li-Bi, and Li-Cd constituents. This unique constituent of the LMB parameter estimation would yield a better outcome for LMB development.
Copyright © by EnPress Publisher. All rights reserved.