The article examines the issues of application and improvement of the methodology for evaluating industrial enterprises as recipients of state support within the framework of the implementation of industrial policy. The authors considered approaches to the content of industrial policy, investigated the factors influencing its efficiency, identified aspects of its imperfections that arise when applying an incomplete list of important parameters of economic development and ambiguity in the interpretation of previously applied estimates. The article presents proposals to improve the methodology for assessing potential recipients of state support based on the development of a comprehensive indicator for assessing enterprises (recipients of support), taking into account not only the classical parameters of the economic efficiency of industrial enterprises applying for state financial assistance, but also such aspects as the development of budgetary funds, belonging to priority sectors of the economy, characteristics of sustainable development and export and innovation potential. Combining the results of a comprehensive assessment of the recipient of state support with a map of the business demography of the territory allows making a decision not only about the fact of support and its efficiency, but also to predict the assessment of the life cycle of the enterprise and its subsequent development.
Mapping land use and land cover (LULC) is essential for comprehending changes in the environment and promoting sustainable planning. To achieve accurate and effective LULC mapping, this work investigates the integration of Geographic Information Systems (GIS) with Machine Learning (ML) methodology. Different types of land covers in the Lucknow district were classified using the Random Forest (RF) algorithm and Landsat satellite images. Since the research area consists of a variety of landforms, there are issues with classification accuracy. These challenges are met by combining supplementary data into the GIS framework and adjusting algorithm parameters like selection of cloud free images and homogeneous training samples. The result demonstrates a net increase of 484.59 km2 in built-up areas. A net decrement of 75.44 km2 was observed in forest areas. A drastic net decrease of 674.52 km2 was observed for wetlands. Most of the wastelands have been converted into urban areas and agricultural land based on their suitability with settlements or crops. The classifications achieved an overall accuracy near 90%. This strategy provides a reliable way to track changes in land cover, supporting resource management, urban planning, and environmental preservation. The results highlight how sophisticated computational methods can enhance the accuracy of LULC evaluations.
Cysteine is one of the body’s essential amino acids to build proteins. For the early diagnosis of a number of diseases and biological issues, L-cysteine (L-Cys) is essential. Our study presents an electrochemical sensor that detects L-cysteine by immobilizing the horseradish peroxidase (HRP) enzyme on a reduced graphene oxide (GCE) modified glassy carbon electrode. The morphologies and chemical compositions of synthesized materials were examined using Fourier transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM). The modified electrode’s electrochemical behavior was investigated using cyclic voltammetry (CV). Cyclic voltammetry demonstrated HRP/rGO/GCE has better electrocatalytic activity than bare GCE in the oxidation of L-cysteine oxidation in a solution of acetate buffer. The electrochemical sensor had a broad linear range of 0 µM to 1 mM, a 0.32 µM detection limit, and a sensitivity of 6.08 μA μM−1 cm−2. The developed sensor was successfully used for the L-cysteine detection in a real blood sample with good results.
Gender inequality is a structural social problem, associated with history, culture, education, religion and politics, this difficulty occurs in all social institutions due to the heterogeneity of the structure in the sexual division of labor, socioeconomic inequality, inclusion and inequity in participation in the public space between men and women. Public policies and attitudes towards gender equality in Peruvian university students were analyzed according to socio-academic variables. A descriptive-comparative study, with a quantitative approach, and not experimental cross-sectional, involved 776 university students from a public and a private university in Peru, intentionally selected. Adaptive attitudes (57.9%) were found to tend to be sexist; Likewise, in the study dimensions, the same trend was found in the sociocultural and relational levels, while in the personal dimension students develop sexist attitudes (62.4%). It is concluded, attitudes towards gender equality are sexist reproduction that is influenced by the sociocultural environment of the family, this situation occurs to a greater extent in men, while female students present attitudes of equality in greater intensity to seek equity in the distribution of roles.
Artificial intelligence (AI) has rapidly evolved, transforming industries and addressing societal challenges across sectors such as healthcare and education. This study provides a state-of-the-art overview of AI research up to 2023 through a bibliometric analysis of the 50 most influential papers, identified using Scopus citation metrics. The selected works, averaging 74 citations each, encompass original research, reviews, and editorials, demonstrating a diversity of impactful contributions. Over 300 contributing authors and significant international collaboration highlight AI’s global and multidisciplinary nature. Our analysis reveals that research is concentrated in core journals, as described by Bradford’s Law, with leading contributions from institutions in the United States, China, Canada, the United Kingdom, and Australia. Trends in authorship underscore the growing role of generative AI systems in advancing knowledge dissemination. The findings illustrate AI’s transformative potential in practical applications, such as enabling early disease detection and precision medicine in healthcare and fostering adaptive learning systems and accessibility in education. By examining the dynamics of collaboration, geographic productivity, and institutional influence, this study sheds light on the innovation drivers shaping the AI field. The results emphasize the need for responsible AI development to maximize societal benefits and mitigate risks. This research provides an evidence-based understanding of AI’s progress and sets the stage for future advancements. It aims to inform stakeholders and contribute to the ongoing scientific discourse, offering insights into AI’s impact at a time of unprecedented global interest and investment.
Copyright © by EnPress Publisher. All rights reserved.