The chemical reinforcement of sandy soils is usually carried out to improve their properties and meet specific engineering requirements. Nevertheless, conventional reinforcement agents are often expensive; the process is energy-intensive and causes serious environmental issues. Therefore, developing a cost-effective, room-temperature-based method that uses recyclable chemicals is necessary. In the current study, poly (styrene-co-methyl methacrylate) (PS-PMMA) is used as a stabilizer to reinforce sandy soil. The copolymer-reinforced sand samples were prepared using the one-step bulk polymerization method at room temperature. The mechanical strength of the copolymer-reinforced sand samples depends on the ratio of the PS-PMMA copolymer to the sand. The higher the copolymer-to-sand ratio, the higher the sample’s compressive strength. The sand (70 wt.%)-PS-PMMA (30 wt.%) sample exhibited the highest compressive strength of 1900 psi. The copolymer matrix enwraps the sand particles to form a stable structure with high compressive strengths.
In recent times, there has been a surge of interest in the transformative potential of artificial intelligence (AI), particularly within the realm of online advertising. This research focuses on the critical examination of AI’s role in enhancing customer experience (CX) across diverse business applications. The aim is to identify key themes, assess the impact of AI-powered CX initiatives, and highlight directions for future research. Employing a systematic and comprehensive approach, the study analyzes academic publications, industry reports, and case studies to extract theoretical frameworks, empirical findings, and practical insights. The findings underscore a significant transformation catalyzed by AI integration into Customer Relationship Management (CRM). AI enables personalized interactions, fortifies customer engagement through interactive agents, provides data-driven insights, and empowers informed decision-making throughout the customer journey. Four central themes emerge: personalized service, enhanced engagement, data-driven strategy, and intelligent decision-making. However, challenges such as data privacy concerns, ethical considerations, and potential negative experiences with poorly implemented AI persist. This article contributes significantly to the discourse on AI in CRM by synthesizing the current state, exploring key themes, and suggesting research avenues. It advocates for responsible AI implementation, emphasizing ethical considerations and guiding organizations in navigating opportunities and challenges.
The experiments were carried out to validate an analytical method and to examine the impact of various decontaminating solutions on the removal of acephate residues from okra. Acephate analysis was performed using HPLC-UV, and sample extraction was done using the QuEChERS method. Method validation encompassed assessing specificity, linearity, precision, accuracy, as well as limits of detection (LOD) and quantification (LOQ). The method exhibited excellent linearity with R2 values ≥ 0.99. LOD and LOQ were determined at 0.5 µg mL−1 and 2 µg mL−1, respectively. The results indicated average recoveries ranging from 80.2% to 83.3% with a % RSD below 5%. The decontamination procedures include rinsing with running tap water, soaking in lukewarm water, 2% CH3COOH, 1% NaCl, 5% NaHCO3, 0.01% KMnO4, and in commercially available decontamination products such as nimwash, veggie clean, and arka herbiwash for a duration 10 minutes. Among all the treatments, soaking in nimwash solution showed remarkable effectiveness (96.75% removal), followed by veggie clean (94.97% removal) and arka herbiwash (95.80% removal). Washing okra samples in running tap water was found to be the least effective compared to other treatments.
Bioactive materials are those that cause a number of interactions at the biomaterial-living tissue inter-face that result in the evolution of a mechanically strong association between them. For this reason, an implantable material’s bioactive behavior is highly advantageous. Silicate glasses are encouraged to be used as bioactive glasses due to their great biocompatibility and beneficial biological effects. The sol-gel method is the most effective for preparing silicate glasses because it increases the material’s bioactivity by creating pores. Glass densities are altered by the internal network connectivity between network formers and network modifiers. The increase in the composition of alkali or alkaline oxides reduces the number of bridging oxygens and increases the number of non-bridging oxygens by retaining the overall charge neutrality between the alkali or alkaline cation and oxygen anion. Higher drying temperatures increase pore densities, while the melt-quenching approach encourages the creation of higher density glasses. Band assignments for the BAG structure can be explained in detail using Fourier Transform Infrared (FTIR) and Raman spectroscopic investigations. Raman spectroscopy makes it simple to measure the concentration of the non-bridging oxygens in the silica matrix.
Copyright © by EnPress Publisher. All rights reserved.