The cost of diagnostic errors has been high in the developed world economics according to a number of recent studies and continues to rise. Up till now, a common process of performing image diagnostics for a growing number of conditions has been examination by a single human specialist (i.e., single-channel recognition and classification decision system). Such a system has natural limitations of unmitigated error that can be detected only much later in the treatment cycle, as well as resource intensity and poor ability to scale to the rising demand. At the same time Machine Intelligence (ML, AI) systems, specifically those including deep neural network and large visual domain models have made significant progress in the field of general image recognition, in many instances achieving the level of an average human and in a growing number of cases, a human specialist in the effectiveness of image recognition tasks. The objectives of the AI in Medicine (AIM) program were set to leverage the opportunities and advantages of the rapidly evolving Artificial Intelligence technology to achieve real and measurable gains in public healthcare, in quality, access, public confidence and cost efficiency. The proposal for a collaborative AI-human image diagnostics system falls directly into the scope of this program.
Researchers from all over the world have been working tirelessly to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic since the World Health Organization (WHO) proclaimed it to be a pandemic in 2019. Expanding testing capacities, creating efficient medications, and creating safe and efficient COVID-19 (SARS CoV-2) vaccinations that provide the human body with long-lasting protection are a few tactics that need to be investigated. In clinical studies, drug delivery techniques, including nanoparticles, have been used since the early 1990s. Since then, as technology has advanced and the need for improved medication delivery has increased, the field of nanomedicine has recently seen significant development. PNPs, or polymeric nanoparticles, are solid particles or particulate dispersions that range in size from 10 to 1000 nm, and their ability to efficiently deliver therapeutics to specific targets makes them ideal drug carriers. This review article discusses the many polymeric nanoparticle (PNP) platforms developed to counteract the recent COVID-19 pandemic-related severe acute respiratory syndrome coronavirus (SARS-CoV-2). The primary subjects of this article are the size, shape, cytotoxicity, and release mechanism of each nanoparticle. The two kinds of preparation methods in the synthesis of polymeric nanoparticles have been discussed: the first group uses premade polymers, while the other group depends on the direct polymerization of monomers. A few of the PNPs that have been utilized to combat previous viral outbreaks against SARS-CoV-2 are also covered.
Healthcare mobile applications satisfy different aims by frequently exploiting the built-in features found in smart devices. The accessibility of cloud computing upgrades the extra room, whereby substances can be stored on external servers and obtained directly from mobile devices. In this study, we use cloud computing in the mobile healthcare model to reduce the waste of time in crisis healthcare once an accident occurs and the patient operates the application. Then, the mobile application determines the patient’s location and allows him to book the closest medical center or expert in some crisis cases. Once the patient makes a reservation, he will request help from the medical center. This process includes pre-registering a patient online at a medical center to save time on patient registration. The E-Health model allows patients to review their data and the experiences of each specialist or medical center, book appointments, and seek medical advice.
Vietnamese e-commerce has recently experienced a robust growth, especially e-commerce platforms such as Shopee, Lazada, Tiki. Reverse logistics has been pointed out as having a significant impact on the performance of an e-commerce platform. To capture the actual impact of some reverse logistics factors, i.e, Return Processing Time (RPT), Return Policy (RP), Return Cost (RC), Customer Service (CSR), and Post-Return Product (PRP), on Customer Satisfaction (CS), an OLS model was conducted. The results indicated significant correlation between all independent variables and dependent variables, which CSR shows the greatest correlation and PRP shows the weakest correlation. The study then made some suggestions for e-commerce platforms in Vietnam to enhance their reverse logistics process to get higher customer satisfaction.
Renewable energy is gaining momentum in developing countries as an alternative to non-renewable sources, with rooftop solar power systems emerging as a noteworthy option. These systems have been implemented across various provinces and cities in Vietnam, accompanied by government policies aimed at fostering their adoption. This study, conducted in Ho Chi Minh City, Vietnam investigates the factors influencing the utilization of rooftop solar power systems by 309 individuals. The research findings, analyzed through the Partial least squares structural equation modeling (PLS-SEM) model, reveal that policies encouragement and support, strategic investment costs, product knowledge and experience, perceived benefits assessment, and environmental attitudes collectively serve as predictors for the decision to use rooftop solar power systems. Furthermore, the study delves into mediating and moderating effects between variables within the model. This research not only addresses a knowledge gap but also furnishes policymakers with evidence to chart new directions for encouraging the widespread adoption of solar power systems.
Water splitting, the process of converting water into hydrogen and oxygen gases, has garnered significant attention as a promising avenue for sustainable energy production. One area of focus has been the development of efficient and cost-effective catalysts for water splitting. Researchers have explored catalysts based on abundant and inexpensive materials such as nickel, iron, and cobalt, which have demonstrated improved performance and stability. These catalysts show promise for large-scale implementation and offer potential for reducing the reliance on expensive and scarce materials. Another avenue of research involves photoelectrochemical (PEC) cells, which utilize solar energy to drive the water-splitting reaction. Scientists have been working on designing novel materials, including metal oxides and semiconductors, to enhance light absorption and charge separation properties. These advancements in PEC technology aim to maximize the conversion of sunlight into chemical energy. Inspired by natural photosynthesis, artificial photosynthesis approaches have also gained traction. By integrating light-absorbing materials, catalysts, and membranes, these systems aim to mimic the complex processes of natural photosynthesis and produce hydrogen fuel from water. The development of efficient and stable artificial photosynthesis systems holds promise for sustainable and clean energy production. Tandem cells, which combine multiple light-absorbing materials with different bandgaps, have emerged as a strategy to enhance the efficiency of water-splitting systems. By capturing a broader range of the solar spectrum, tandem cells optimize light absorption and improve overall system performance. Lastly, advancements in electrocatalysis have played a critical role in water splitting. Researchers have focused on developing advanced electrocatalysts with high activity, selectivity, and stability for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). These electrocatalysts contribute to overall water-splitting efficiency and pave the way for practical implementation.
Copyright © by EnPress Publisher. All rights reserved.