In recent years, phytoremediation as a promising ecological restoration technique has emerged. Phytoremediation is a repair method that uses green plants to transfer, contain, or convert contaminants to the environment. Phytoremediation is a heavy metal, organic or radioactive element contaminated soil and water. The results show
that the use of plant absorption, volatilization, root filtration, degradation, stability and other effects, can purify soil
or water pollutants, to achieve the purpose of purifying the environment, so phytoremediation is a great potential, the development of the clean environment Pollution of green technology. The use of plants to repair contaminated soil is a cheap and durable bioremediation technique. The protection and management of Taihu Lake is an indispensable measure for the protection of Taihu Lake water, and the advantages of phytoremedry investment, low freight and
low leakage of pollutants show that its promotion has this unusual significance. This paper expounds the difference
of remediation soil between Taihu Lake Ecological Shelter Forest, and the comparison of the soil capacity of the
experimental tree species. Second, the correlation between the monitoring projects is discussed.
Delay is the leading challenge in completing Engineering, Procurement, and Construction (EPC) projects. Delay can cause excess costs, which reduces company profits. The relationship between subcontractors and the main contractor is a critical factor that can support the success of an EPC project. The problematic financial condition of the main contractor can cause delay in payments to subcontractors. This research will set a model that combines the system dynamics and earned value method to describe the impact of subcontractor advance payments on project performance. The system dynamics method is used to model and analyze the impact of interactions between variables affecting project performance, while the earned value method is applied to quantitatively evaluate project performance and forecast schedule and cost outcomes. These two methods are used complementarily to achieve a holistic understanding of project dynamics and to optimize decision-making. The designed model selects the optimum scenario for project time and costs. The developed model comprises project performance, costs, cash flow, and performance forecasting sub-models. The novelty in this research is a new model for optimizing project implementation time and costs, adding payment rate variables to subcontractors and subcontractor performance rates. The designed model can provide additional information to assist project managers in making decisions.
Nothofagus pumilio forests constitute the most economically important forest stand in southern Argentina and Chile. Total volume stocking and volumetric yield vary according to site quality, degree of occupation, growth stage and forest history of the stand. The objective of this work was to evaluate the stocking and the productive potential in quantity and quality of products for the sawmilling industry, using three harvesting systems (short logs, long logs and complete shafts) in the protection cut of a N. pumilio forest of site quality III in Tierra del Fuego (Argentina). The trials were conducted in an irregular mature forest with two strata and abundant regeneration (3.0 ha; RDI 93.8–113.4%). Total volumes varied between 726.5 and 850.3 m3∙ha-1, with a volume/basal area ratio of 11.8 to 12.1 m3∙m-2. The harvesting rates obtained were: 45.5% for complete logs, 21.3% for long logs and 22.4% for short logs. A model was used to estimate the timber volume for each system, where full shafts resulted in a significant increase in timber volume. Considering new alternatives in the planning of harvesting in forest management for N. pumilio forests, such as the system of complete shafts, allows obtaining higher harvesting rates, increasing the benefits for the forestry company and minimizing the damage to the forest, due to the shorter distance of the machinery in the forest harvesting.
Adsorption is a widely used method for the treatment of dissolved contaminants. Various agro-industrial wastes have been explored as potential adsorbents, showing high efficiency in dye removal. Each adsorbate-adsorbent pair needs kinetic, and equilibrium models to scale up this process. In this work, the equilibrium, kinetics and thermodynamics of the corn Tuza-Red 40 system were evaluated under batch system at ph = 2.0 at temperatures of 25, 40, and 55 °C. The Langmuir, Freundlich and Temkin models were selected for the isotherm representation, while the Lagergren, Ho, and Elovich equations for the kinetics of the process. The Freundlich model presented the best fit to the isotherms, the adsorption kinetics was best described by the Ho equation, and the values for Gibbs free energy and entropy indicated the spontaneity and feasibility of the process.
Municipal authorities in industrialized and in developing countries face unceasingly the issues of congestion, insufficiency of transport means capacity, poor operability of transport systems and a growing demand for reliable and effective urban transport. While the expansion of infrastructure is generally considered as an undesirable option, in specific cases, when short links or ring roads are missing, new infrastructure projects may provide beneficial solutions. The upgrading and renewal of existing networks is always a challenge to the development of a modern city and the welfare of citizens. Central governance and management of transport systems, the establishment of smart and digital infrastructure, advanced surveillance and traffic monitoring, and intra-city energy-harvesting policy are some of the steps to be taken during the transition to a green and sustainable urban future.
Municipal authorities have also to consider other options and strategies to create a citizen-friendly setting for mobility: diminish the need for trips (digitalization of services, e-commerce, etc.), shift from private to public transport and transform the urban form to promote non-motorized transport in favor of the natural environment and public health. A citizen-friendly policy based on the anticipation of future needs and technological development seems to be a requisite for European cities searching for a smooth integration of their networks into urban space.
Copyright © by EnPress Publisher. All rights reserved.