Among the dental composites, Urethane Dimethacrylate (UDMA) is commonly used as a component in treating oral complications. Many molecular dynamics approaches are used to understand the behaviour of the material at room temperature as well as at higher temperatures to get a better insight after comparison with experimental values at the atomic level. There are three critical physical properties associated with these components, like abrasive wear, viscosity, and moduli, which play an essential role in determining the treatment and can be computed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), the general-purpose quantum chemistry program package (ORCA), and the General Utility Lattice Program (GULP) molecular dynamics methods. A radial distribution function plot is generated using visual molecular dynamics (VMD) for UDMA and BisGMA. A comparison of these parameters with BisGMA, another component of dental composites, along with experimental results, is carried out in the present investigation. Further, since radiation also matters for settling the materials in dental treatment, we have computed absorption spectra from 200 nm to 800 nm using LAMMPS/ORCA.
The purpose of this study is to look at the negative environmental impacts and social problems, which require a government response to maintain the sustainability of the palm oil industry. This research uses Online Research Methods (ORMs) to collect data and information through the internet and other digital technologies. The collected data was then coded using Nvivo 12 Plus. The purpose of this study is to fill the research void left by previous researchers by analyzing investment strategies and services in supporting the sustainability of the palm oil industry in Riau Province. This study shows that to support the potential of the palm oil industry to remain optimal, the central and local governments coordinate to provide investment services and pay attention to the sustainability issues of the palm oil industry. Some important aspects to consider are strengthening regulations, an integrated plantation licensing system, improving access to markets, RSPO certification, realization of foreign investment, downstream industry, replanting programme, plantation revitalisation programme, and sustainable plantation partnerships. However, there are still some crucial challenges, particularly land conflicts, climate change, environmental issues, limited technology and innovation, and export market dependence. These challenges may hamper future investment opportunities.
Remote sensing technologies have revolutionized forestry analysis by providing valuable information about forest ecosystems on a large scale. This review article explores the latest advancements in remote sensing tools that leverage optical, thermal, RADAR, and LiDAR data, along with state-of-the-art methods of data processing and analysis. We investigate how these tools, combined with artificial intelligence (AI) techniques and cloud-computing facilities, enhance the analytical outreach and offer new insights in the fields of remote sensing and forestry disciplines. The article aims to provide a comprehensive overview of these advancements, discuss their potential applications, and highlight the challenges and future directions. Through this examination, we demonstrate the immense potential of integrating remote sensing and AI to revolutionize forest management and conservation practices.
The crypto space offers numerous opportunities for users to grow their wealth through trading, lending, and borrowing activities. However, these opportunities come with inherent risks that need to be carefully managed to protect your assets and maximize returns. By understanding the risks associated with wallets and depository services, trading, lending, and borrowing, users can make informed decisions and enjoy the benefits of the rapidly evolving world of cryptocurrencies. This review paper analyses 43 papers for the period of 2019–2023 and proposes recommendations for policy makers. The results confirm that international regulators expect national authorities to implement a regulatory framework for digital assets comparable to those that already exist for traditional finance. For national authorities, this means having and using the powers, tools and resources to regulate and oversee a growing market. Authorities should cooperate and coordinate with each other, at the national and international levels, to encourage consistency and knowledge sharing. Market operators (exchanges), service providers, exchanges and wallets, create effective risk management structures, as well as reliable mechanisms for collecting, storing, protecting and reporting data.
Malaria is a mosquito-borne infectious disease that affects humans and poses a severe public health problem. Nigeria has the highest number of global cases. Geospatial technology has been widely used to study the risks and factors associated with malaria hazards. The present study is conducted in Ibadan, Oyo State, Nigeria. The objective of this study is to map out areas that are at high risk of the prevalence of malaria by considering a good number of factors as criteria that determine the spread of malaria within Ibadan using open-source and Landsat remote sensing data and further analysis in GIS-based multi-criteria evaluation (MCE). This study considered factors like climate, environmental, socio-economic, and proximity to health centers as criteria for mapping malaria risk. The MCE used a weighted overlay of the factors to produce an element at-risk map, a malaria hazard map, and a vulnerability map. These maps were overlaid to produce the final malaria risk map, which showed that 72% of Ibadan has a risk of malaria prevalence. Identification and delineation of risk areas in Ibadan would help policymakers and decision-makers mitigate the hazards and improve the health status of the state.
Due to the short cost-effective heat transportation distance, the existing geothermal heating technologies cannot be used to develop deep hydrothermal-type geothermal fields situated far away from urban areas. To solve the problem, a new multi-energy source coupling a low-temperature sustainable central heating system with a multifunctional relay energy station is put forward. As for the proposed central heating system, a compression heat pump integrated with a heat exchanger in the heating substation and a gas-fired water/lithium bromide single-effect absorption heat pump in the multifunctional relay energy station are used to lower the return temperature of the primary network step by step. The proposed central heating system is analyzed using thermodynamics and economics, and matching relationships between the design temperature of the return water and the main line length of the primary network are discussed. The studied results indicate that, as for the proposed central heating system, the cost-effective main line length of the primary network can approach 33.8 km, and the optimal design return temperature of the primary network is 23 ℃. Besides, the annual coefficient of performance and annual energy efficiency of the proposed central heating system are about 3.01 and 42.7%, respectively.
Copyright © by EnPress Publisher. All rights reserved.