One of the biggest environmental problems that has affected the planet is global warming, due to high concentrations of carbon (CO2), which has led to crops such as coffee being affected by climate change caused by greenhouse gases (GHG), especially by the increase in the incidence of pests and diseases. However, carbon sequestration contributes to the mitigation of GHG emissions. The objective of this work was to evaluate the carbon stored in above and below ground biomass in four six-year-old castle coffee production systems. In a trial established under a Randomized Complete Block Design (RCBD) with the treatments Coffee at free exposure (T1), Coffee-Lemon (T2), Coffee-Guamo (T3) and Coffee-Carbonero (T4), at three altitudes: below 1,550 masl, between 1,550 and 2,000 masl and above 2,000 masl. Data were collected corresponding to the stem diameters of coffee seedlings and shade trees with which allometric equations were applied to obtain the carbon variables in the aerial biomass and root and the carbon variables in leaf litter and soil obtained from their dry matter. Highly significant differences were obtained in the four treatments evaluated, with T4 being the one that obtained the highest carbon concentration both in soil biomass with 100.14 t ha-1 and in aerial biomass with 190.42 t ha-1.
Rambutan (Nephelium lappaceum L.) was introduced to Mexico in 1959. Currently there is an estimated planted area of 835.96 ha and a production of 8,730.27 tons. The fruit is mainly consumed fresh, but quickly loses its external appearance due to dehydration and browning, which limits its commercialization, an alternative may be minimal processing and adjuvant treatments that extend the shelf life. The objective of this work was to evaluate the effect of coating with cactus mucilage (Opuntia ficus-indica), in the preservation of minimally processed rambutan stored at 5 °C, in two types of packaging. The rambutan was sanitized with chlorinated water (80 ppm), the epicarp was removed and batches were formed for each treatment. The factors were type of container (polyethylene bag and polystyrene container), coating (with and without coating) and time (0, 3, 6, 6, 10 and 12 d). The coating consisted of mucilage obtained from developing cladodes (15–21 cm), applied by dipping. All treatments were stored at 5 ℃. Total soluble solids (TSS), firmness (N) and color (L*, a*, b*, chroma and hue angle) were evaluated at each storage period. Also, 40 untrained judges (47% male and 53% female) evaluated sensory acceptability, consumption intention and acceptance/rejection. The results showed significant effect (p ≤ 0.05) of package type on firmness, chroma and hue angle. Coating had an effect on L* value and product acceptability. Consumption intention was higher, and was maintained for 10 days, in fruits with coating and packaged in polyethylene bags, stored at 5 ℃.
The use of bioproducts, economically viable, are of extreme importance in the protection and stimulation of germination in vegetable crops. This work evaluated the effect of the microorganisms Azospirillum brasiliense, Bacillus sub-tilis, Trichoderma harzianum and the commercial seed treatment product (Fipronil + Pilaclostrobin and Methyl Thiophanate) on seeds and seedlings of lettuce (Lactuca sativa), carrot (Daucus carota) and tomato (Solanum lycopersicum). The seeds were inoculated before being submitted to the germination test. The chemical treatment proved ineffective in protecting the seed of all crops and stimulating germination. T. harzianum increased the germination index of lettuce seeds, had better values in root system size in tomato crop and stimulated radicle emission in carrot. B. subtilis stood out in dry matter accumulation in tomato crop. The microorganisms B. subtilis and T. harzianum present potential for vegetable seed treatment.
This study investigated the level of satisfaction among consumers of special tea (Monsonia burkeana) in the Capricorn District Municipality, Limpopo Province, South Africa. It sought to identify the factors that influenced this satisfaction. A total of 225 respondents were selected using snowball sampling, and primary data were collected through structured questionnaires. Descriptive statistics were used to analyse consumer profiles and satisfaction levels, while multinomial logistic regression determined the factors influencing satisfaction across four categories: “Not satisfied at all”, “Satisfied”, “Not sure”, and “Highly satisfied”. The results revealed an average respondent age of 29.95 years and an average annual tea consumption of 4.684 uses, with over 50% of both male and female respondents expressing satisfaction. Regression analysis indicated that market access, cultural influences, income level, and the person introducing the tea significantly influenced dissatisfaction relative to high satisfaction. The income level was the only significant factor distinguishing “Satisfied” from “Highly satisfied”. Gender, age, marital status, and employment type were significant predictors for “Not sure” compared to “Highly satisfied”. These findings highlight the importance of developing the medicinal plant market, promoting cultural education, and implementing sustainable cultivation and conservation practices for Monsonia burkeana. Efforts to improve market access and address income disparities are also necessary to enhance consumer satisfaction and ensure the tea’s continued availability and cultural relevance.
With the purpose of strengthening the knowledge and prevention of landslide disasters, this work develops a methodology that integrates geomorphological mapping with the elaboration of landslide susceptibility maps using geographic information systems (GIS) and the multiple logistic regression method (MLR). In Mexico, some isolated works have been carried out with GIS to evaluate slope stability. However, to date, no practical and standardized method has been developed to integrate geomorphological maps with landslide inventories using GIS. This paper shows the analysis carried out to develop a multitemporal landslide inventory together with the morphometric analysis and mapping technique for the El Estado River basin where, selected as the study area, is located on the southwestern slope of the Citlaltepetl or Pico de Orizaba volcano. The geological and geomorphological factors in combination with the high seasonal precipitation, the high degree of weathering and the steep slopes predispose its surfaces to landslides. To assess landslide susceptibility, a landslide inventory map was prepared using aerial photographs, followed by geomorphometric mapping (altimetry, slopes and geomorphology) and field work. With this information, landslide susceptibility was modeled using multiple logistic regression (MLR) within a GIS platform and the landslide susceptibility map was obtained.
First principles simulation studies using the density functional theory have been performed on (9, 0) Zigzag Singlewalled Carbon Nanotube (SWCNT) to investigate its electronic, optical and thermodynamic properties using CASTEP (Cambridge Sequential Total Energy Package) and DFTB (Density Functional based Tight Binding) modules of the Material Studio Software version 7.0. Various functionals and sub-functionals available in the CASTEP Module (using Pulay Density Mixing treatment of electrons) and various eigen-solvers and smearing schemes available in the DFTB module (using smart algorithm) have been tried out to chalk out the electronic structure. The analytically deduced values of the band gap obtained were compared with the experimentally determined value reported in the literature. By comparison, combination of Anderson smearing scheme and standard diaogonalizer produced best results in DFTB module while in the CASTEP module, GGA (General Gradient approximation) functional with RPBE (Revised-perdew-Burke-Ernzerh) as Sub-functional was found to be the most consistent. These optimized parameters were then used to determine various electronic, optical and thermodynamic properties of (9, 0) Singlewalled Nanotube. (9, 0) Singlewalled Nanotube, which is extensively being used for sensing NH3, CH4 & NO2, has been picked up in particular as it is reported to exhibit a finite energy band gap in contrast to its expected metallic nature. The study is of utmost significance as it not only probes and validates the simulation route for predicting suitable properties of nanomaterials but also throws light on the comparative efficacy of the different approximation and rationalization quantum mechanical techniques used in simulation studies.
Copyright © by EnPress Publisher. All rights reserved.