This paper highlights the complex relationship between entrepreneurship, sustainable development, and economic growth in 41 European countries, using a reliable K-Means cluster analysis. The research thoroughly evaluates three key factors: the SDG Index for sustainable development, GDP per capita for economic well-being, and the New Business Density Rate for entrepreneurial activity. Our methodology reveals three distinct narratives that embody varying degrees of economic vitality and sustainability. Cluster 1 comprises the financially stable and sustainability-oriented countries of Western and Northern Europe. Cluster 2 showcases the variegated economic and sustainability initiatives in Central and Southern Europe. Cluster 3 envelopes the economic titans with noteworthy business expansion but with the potential for better sustainable practices. The analysis reveals a favourable association between economic prosperity and sustainable development within clusters, although with nonlinear intricacies. The research concludes with a series of strategic imperatives specifically crafted for each cluster, promoting economic variation, increased sustainability, invention, and worldwide collaboration. The resulting findings highlight the crucial need for policy-making that considers the specific context and the potential for combined European resilience and sustainability.
Analysis of the factors influencing the price of carbon emissions trading in China and its time-varying characteristics is essential for the smooth operation of the carbon trading system. We analyse the time-varying effects of public concern, degree of carbon regulation, crude oil price, international carbon price and interest rate level on China’s carbon price through SV-TVP-VAR model. Among them, the quantification of public concern and the degree of carbon emission regulation is based on microblog text and government decisions. The results show that all the factors influencing carbon price are significantly time-varying, with the shocks of each factor on carbon price rising before 2019 and turning significantly thereafter. The short-term shock effect of each factor is more significant compared to the medium- and long-term, and the effect almost disappears at a lag of six months. Thanks to public environmental awareness, low-carbon awareness and the progress of carbon market management mechanisms, public concern has had the most significant impact on carbon price since 2019. With the promulgation of relevant management measures for the carbon market, relevant regulations on carbon emission accounting, financing constraints, and carbon emission quota allocation for emission-controlled enterprises have become increasingly mature, and carbon price signals are more sensitive to market information. The above findings provide substantial empirical evidence for all stakeholders in the market, who need to recognize that the impact of non-structural factors on the price of carbon varies over time. Government intervention also serves as a key aspect of carbon emission control and requires the introduction of relevant constraints and incentives. In particular, emission-controlling firms need to focus on the policy direction of the carbon market, and focus on the impact of Internet public opinion on business production while reducing carbon allowance demand and energy dependence.
Recognizing the discipline category of the abstract text is of great significance for automatic text recommendation and knowledge mining. Therefore, this study obtained the abstract text of social science and natural science in the Web of Science 2010-2020, and used the machine learning model SVM and deep learning model TextCNN and SCI-BERT models constructed a discipline classification model. It was found that the SCI-BERT model had the best performance. The precision, recall, and F1 were 86.54%, 86.89%, and 86.71%, respectively, and the F1 is 6.61% and 4.05% higher than SVM and TextCNN. The construction of this model can effectively identify the discipline categories of abstracts, and provide effective support for automatic indexing of subjects.
The coconut industry has deep historical and economic importance in Sri Lanka, but coconut palms are vulnerable to water stress exacerbated by environmental challenges. This study explored using Sunn hemp (Crotalaria juncea L.) in major coconut-growing soils in Sri Lanka to improve resilience to water stress. The study was conducted at the Coconut Research Institute of Sri Lanka to evaluate the growth of Sunn hemp in prominent coconut soils—gravel, loamy, and sandy—to determine its cover crop potential. Sunn hemp was planted in pots with the three soil types, arranged in a randomized, complete design with 48 replicates. Growth parameters like plant height, shoot/root dry weight, root length, and leaf area were measured at 2, 4, 6, and 8 weeks after planting. Soil type significantly impacted all growth parameters. After 8 weeks, sandy soil showed the highest plant height and root length, while loamy soil showed the highest shoot/root dry weight and leaf area, followed by sandy and gravel soils. Nitrogen content at 6 and 8 weeks was highest in loamy soil plants. In summary, Sunn hemp produces more biomass in sandy soils, while loamy soils promote greater nutrient accumulation and growth. This suggests the suitability of Sunn hemp as a cover crop across major coconut-growing soils in Sri Lanka, improving resilience.
Conflicts are inevitable in any human community, despite the fact that they are never desirable. One of the characteristics of the contemporary world is conflict. Different parties participate in disputes (individuals, organizations, and states). When disputes arise, interventionist methods are put into action. Conflicts arise in a variety of ways, such as disagreement, rage, quarrelling, hatred, destruction, killing, or war, because human requirements are diverse. Conflict takes many different shapes, and so do interventions. Individuals, groups (both local and foreign), and governments can all intervene in a conflict. The media and its functions are up for debate among those who mediate disputes. Can the media be seen as intervening in a dispute, or are they merely performing their mandated duties? The diversity of opinions is what drives conversations in peace journalism. In addition, peace journalism promotes media engagement and intervention in conflict situations in order to lessen and end conflict. Media intervention, according to some critics, is not objective journalism because those in charge of educational information management and journalists are not expected to make decisions about the news; rather, they should just tell it as they see it. Therefore, the purpose of this article is to examine the idea of conflict, the stages of conflict development, interventions in conflicts, and the contentious position of the media in conflicts from an educational information management perspective. Hence, this paper will contribute to the role of educational information management via social media and other new media platforms, which have occasionally been used to hold governments responsible, unite people in protest of violence, plan relief operations, empower people, dissipate tensions via knowledge sharing, and create understanding across boundaries.
The increasing epileptic electricity supply, mainly in the residential areas of Nigerian cities, has been linked to the incorrect knowledge of the numerous socio-economic and physical indices that influence household electricity usage. Most of the seemingly identified explanatory factors were done at macro level which does not give a clear estimate of this electricity demand. The thrust of the study is to analyse empirically the household electricity determinants in Nigerian cities with a view to evolving a more informed and sustainable energy policy decision. Multistage area cluster sampling method was adopted in the study where 769 copies of structured questionnaire were distributed to electricity users of prepaid meters in five major Nigerian cities. The research hypothesis was tested using the multiple linear regression statistical tool. The result revealed that nine variables which include age (r = 0.05, p-value: 0.05), household income (r = 0.00, p-value: 0.05), number of hours that people stay outside the house (r = 0.043, p-value: 0.05), number of teenagers at home, (r = 0.006, p-value: 0.01) number of electrical appliances (r = 0.016, p-value: 0.01), type of house (r = 0.012, p-value: 0.01), hours that the electrical appliances are used (r = 0.043, p-value: 0.05), weather condition, (r = 0.011, p-value: 0.05) and the location of the building (r = 0.045, p-value: 0.05) were significant in determining the household electricity consumption. Policies based on the findings will give energy and urban planners an empirical basis for accurate and robust forecasting of the determinants that influence household electricity consumption in Nigeria that is devoid of any speculation or unfounded predictions.
Copyright © by EnPress Publisher. All rights reserved.