Atomic interaction between mediator protein of human prostate cancer (PHPC) and Fe/C720 Buckyballs-Statin is important for medical science. For the first time, we use molecular dynamics (MD) approach based on Newton’s formalism to describe the destruction of PHPC via Fe/C720 Buckyballs-Statin with atomic accuracy. In this work, the atomic interaction of PHPC and Fe/C720 Buckyballs-Statin introduced via equilibrium molecular dynamics approach. In this method, each PHPC and Fe/C720 Buckyballs-Statin is defined by C, H, Cl, N, O, P, S, and Fe elements and contrived by universal force field (UFF) and DREIDING force-field to introduce their time evolution. The results of our studies regarding the dynamical behavior of these atom-base compounds have been reported by calculating the Potential energy, center of mass (COM) position, diffusion ratio and volume of defined systems. The estimated values for these quantities show the attraction force between Buckyball-based structure and protein sample, which COM distance of these samples changes from 10.27 Å to 2.96 Å after 10 ns. Physically, these interactions causing the destruction of the PHPC. Numerically, the volume of this biostructure enlarged from 665,276 Å3 to 737,143 Å3 by MD time passing. This finding reported for the first time which can be considered by the pharmaceutical industry. Simulations indicated the volume of the PHPC increases by Fe/C720 Buckyballs-Statin diffusion into this compound. By enlarging this quantity (diffusion coefficient), the atomic stability of PHPC decreases and protein destruction procedure fulfilled.
COVID was initially detected in Wuhan City, Hubei Province, People's Republic of China, in late 2019, as reported by researchers. Subsequently, it rapidly disseminated to numerous nations at the beginning of 2020, ultimately manifested as a pandemic with worldwide prevalence. Regarded as one of the most severe pandemics in documented human history, this outbreak resulted in deaths and infection over a quite millions of individuals globally. Due to its airborne nature, the coronavirus can be transmitted through actions such as coughing, sneezing, talking, and similar activities. Enclosed spaces lacking sufficient airflow are more likely to facilitate the spread of air borne diseases. Wearing a face mask that can provide protection against airborne pollutants, considered as Standard Operation Procedures (SOPS) for COVID-19. It is crucial to monitor the implementation of preventive measures both within and outside the building or workplace in order to prevent the transmission of COVID-19. The main objective of this project is to develop a face mask and social distance detector. You Only Learn One Representation (YOLOR) was implemented as a most advanced end-to-end target identification approach to develop the proposed system. An online available facemask dataset was utilized. The developed system can track individuals wearing masks in real time and can also identify and highlight persons with a rectangular box if their social distance is violated. This proposed interactive framework enables constant monitoring both internally and externally, thereby enhancing the capacity to identify offenders and ensure the safety of all individuals involved.
This document outlines the advancements in AI- accelerated frame generation utilizing Neural Processing Units (NPU) in mobile devices. The integration of NPU technology enhances the processing efficiency of mobile graphics, enabling real-time frame generation that significantly improves video and image quality. By leveraging specialized hardware designed for AI computations, the system reduces latency and optimizes power consumption, making it ideal for demanding applications such as gaming and augmented reality. This paper discusses the underlying architecture of NPUs, their role in accelerating frame generation, and the potential impacts on user experience in mobile environments. The findings illustrate how NPU-driven solutions can transform mobile graphics, offering a more immersive and responsive experience while efficiently managing resources.
Osteoid osteoma (OO) is a benign osteoblastic tumor of bone that usually affects children and young adults. They are usually located on metaphysis or diaphysis of long bones. Their clinical, anamnesis and radiological findings are typical. Intra-articular OO however has different properties due to its placement within joints. Sclerosis around the lesion is either minimal or non-existent, but synovitis can be seen in the joint. For this reason, they are usually diagnosed later. In this case series, we diagnosed three cases (2 ankles and 1 hip joint) that were diagnosed with osteochondral lesions previously and had in chronic pain which did not respond to several treatments in different centers with intra-articular OO and treated them with radiofrequency ablation using computerized tomography. Knowing the radiological properties of intra-articular OO and being aware of this condition during differential diagnosis of joint pain cases will be useful to diagnose this rare pathology.
Objective: Standardizing image acquisition protocols and image quality across cameras is an important need in imaging, in particular in multi-center clinical trials and the use of image analysis and machine learning algorithms. The objective of this study was to examine the effect of ordered subset expectation maximization (OSEM) reconstruction parameters on the quantitative image quality of cardiac perfusion SPECT images in different typical SPECT cameras and therefore assess the need to change the parameter values across cameras. Methods: The analysis was carried out by comparing the defect contrast-to-noise ratio (CNR) at 12 OSEM subset-iteration combinations. Eight frames were reconstructed using the SIMIND Monte Carlo Simulation package. An activity of 370 MBq (10mCi) and projection acquisition interval of 20 seconds per projection were used. Attenuation (AC) and scatter corrections (SC) were performed in this study for all images. Results: The 16-2 subset-iteration combination yielded the highest CNR and defect contrast values for both cameras. The difference between CNR values for two cameras was found to be close to 5%. Conclusions: Monte Carlo simulations can be useful to investigate how quantitative image quality behaves with respect to reconstruction parameters and correction algorithms in a controlled environment. In this study, the use of different camera brands did not seem to significantly affect the lesion detectability. Further simulations with more extended range of parameters and camera brands may be conducted in the future to quantify further the variability between different brands of cameras.
Retinal disorders, such as diabetic retinopathy, glaucoma, macular edema, and vein occlusions, are significant contributors to global vision impairment. These conditions frequently remain symptomless until patients suffer severe vision deterioration, underscoring the critical importance of early diagnosis. Fundus images serve as a valuable resource for identifying the initial indicators of these ailments, particularly by examining various characteristics of retinal blood vessels, such as their length, width, tortuosity, and branching patterns. Traditionally, healthcare practitioners often rely on manual retinal vessel segmentation, a process that is both time-consuming and intricate, demanding specialized expertise. However, this approach poses a notable challenge since its precision and consistency heavily rely on the availability of highly skilled professionals. To surmount these challenges, there is an urgent demand for an automatic and efficient method for retinal vessel segmentation and classification employing computer vision techniques, which form the foundation of biomedical imaging. Numerous researchers have put forth techniques for blood vessel segmentation, broadly categorized into machine learning, filtering-based, and model-based methods. Machine learning methods categorize pixels as either vessels or non-vessels, employing classifiers trained on hand-annotated images. Subsequently, these techniques extract features using 7D feature vectors and apply neural network classification. Additional post-processing steps are used to bridge gaps and eliminate isolated pixels. On the other hand, filtering-based approaches employ morphological operators within morphological image processing, capitalizing on predefined shapes to filter out objects from the background. However, this technique often treats larger blood vessels as cohesive structures. Model-based methods leverage vessel models to identify retinal blood vessels, but they are sensitive to parameter selection, necessitating careful choices to simultaneously detect thin and large vessels effectively. Our proposed research endeavors to conduct a thorough and empirical evaluation of the effectiveness of automated segmentation and classification techniques for identifying eye-related diseases, particularly diabetic retinopathy and glaucoma. This evaluation will involve various retinal image datasets, including DRIVE, REVIEW, STARE, HRF, and DRION. The methodologies under consideration encompass machine learning, filtering-based, and model-based approaches, with performance assessment based on a range of metrics, including true positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), negative predictive value (NPV), false discovery rate (FDR), Matthews's correlation coefficient (MCC), and accuracy (ACC). The primary objective of this research is to scrutinize, assess, and compare the design and performance of different segmentation and classification techniques, encompassing both supervised and unsupervised learning methods. To attain this objective, we will refine existing techniques and develop new ones, ensuring a more streamlined and computationally efficient approach.
Copyright © by EnPress Publisher. All rights reserved.