Stimuli-responsive, smart, or intelligent polymers are materials that significantly change their physical or chemical properties when there is a small change in the surrounding environment due to either internal or external stimuli. In the last two decades or so, there has been tremendous growth in the strategies to develop various types of stimuli-responsive polymer (SRP) materials/systems that are suitable for various fields, including biomedical, material science, nanotechnology, biotechnology, surface and colloid sciences, biochemistry, and the environmental field. The wide acceptability of SRPs is due to their availability in different architectural forms such as scaffolds, aggregates, hydrogels, pickering emulsions, core-shell particles, nanogels, micelles, membranes, capsules, and layer-by-layer films. The present review focuses on different types of SRPs, such as physical, chemical, and biological, and various important applications, including controlled drug delivery (CDD), stabilization of colloidal dispersion, diagnostics (sensors and imaging), tissue engineering, regenerative medicines, and actuators. The applications of SRPs have immense potential in various fields, and the author hopes these polymers will add a new field of applications through new concepts.
Twenty-two tomato (Solanum lycopersicum L.) genotypes were examined for correlation and path analysis in the randomized block design under open field conditions. Total fruit yield showed a significant positive correlation with the number of fruits per plant, average fruit weight, lycopene content, and percent seedling survival in the field at both the genotypic and phenotypic levels. A strong correlation between these characters revealed that selection based on these characters would consequently improve the total fruit yield. Path analysis showed that the number of fruits per plant, average fruit weight, percent seedling survival in the nursery, and number of locules per fruit exhibited high positive direct phenotypic effects on total fruit yield, whereas the number of fruits per plant, average fruit weight, percent seedling survival in the field, and pollen viability had very high positive direct genotypic effects. Therefore, to increase the yield, it would be profitable to prioritize these traits in the selection program.
After the oil and economic boom of the 20th century, Doha experienced significant development in terms of the architectural scene, design, function, and sociocultural transformations. The advancements in global architecture have facilitated innovative and streamlined construction processes, while creating a paradigm shift in the overall architecture of dwellings and how people navigate around the house. In this context, this research aims to study the impact of globalization on housing typologies and the factors influencing their evolution, focusing on the city of Doha as a case study. This study is based on a qualitative research approach that centers its investigation on Doha while exploring strategies for preserving Arabic-Islamic identity. The research investigation used a content analysis methodology to analyze three additional case studies within the MENA region. The results indicate that new housing typologies have emerged in cities due to globalization and changes in physical and sociocultural dimensions. In addition, preserving older neighborhoods and housing typologies through a bottom-up approach is essential for design creativity and climatic and sociocultural sensitivity while exchanging knowledge and sharing experiences between generations. Furthermore, this article promotes heritage awareness and encourages local authorities to preserve Doha’s surviving historic neighborhoods and architectural language to restore the city’s urban identity. The findings of this research can provide helpful guidance to architects and urban planners on how Doha’s housing has developed until the contemporary period.
As urbanisation increases, questions arise about the desirability of further urban growth, as it was not accompanied by corresponding economic growth, and social and environmental problems began to grow in the largest cities in the world. The objective of the article is to substantiate the limits of urbanization growth in Kazakhstan based on the study of theoretical views on this process, analysis of the dependence of social and economic parameters of 134 countries on the urbanisation level and calculation of the urbanisation level that contributes most to economic growth and social well-being. To achieve the goal, the following tasks have been set and solved: theoretical views on the process of urbanization have been generalized; a hypothesis has been put forward about the emergence of an “urbanization trap” in which the growth of large cities is not accompanied by economic growth and improvement of social well-being; an analysis of the dependence of socio-economic indicators on the level of urbanization has been carried out on the example of 134 countries of the world; the level of urbanization that maximizes economic growth and social well-being is calculated; the necessity of the development of small towns in Kazakhstan is substantiated. To solve the problems, the methods of logical analysis, analogies and generalizations, economic statistics, index, graphical, Pearson correlation analysis, Spearman and Kendall rank regression based on models in SPSS were used. As a result, the following conclusions are made: the hypothesis of a possible deterioration of socio-economic indicators in large cities is confirmed; the best positive result is demonstrated by the level of urbanization of 50%–59%. The recommendations are justified: in Kazakhstan, it is necessary to adhere to the level of urbanization no higher than 59%; the growth of urbanization should be ensured through the development of small towns; it is necessary to improve the methods of managing the process of urbanization and develop individual city plans.
Copyright © by EnPress Publisher. All rights reserved.