Over several centuries, the native vegetation of the flat part of the Bogotá Savanna has been almost completely replaced by crops, pastures and urbanization. The last remnant of this vegetation is a small forest (10 hm2), located at Hacienda Las Mercedes on the northern edge of the city of Bogotá. The reduced size and isolation of the forest, aggravated by the uncontrolled growth of invasive vegetation (lianas and wild blackberry) has resulted in the loss of many species. However, in recent years the forest has been subject to rehabilitation actions and currently the area is immersed in a reserve where more extensive restoration programs are planned. In order to evaluate changes in the bird community to estimate the effects of restoration actions, the avifauna present in 2001–2002 and in 2014 was recorded by visual and auditory records at fixed points in the forest. Twenty-seven forest species were found in the first census and 30 in the second, and the relative abundances of at least a third of them also increased over the 13 years, indicating a positive result in the recovery of the forest. The results highlight the recovery capacity of the degraded ecosystems and the importance of continuing with restoration actions in the reserve area.
Based on first-principles methods, the authors of this paper investigate spin thermoelectric effects of one-dimensional spin-based devices consisting of zigzag-edged graphene nanoribbons (ZGNRs), carbon chains and graphene nanoflake. It is found that the spin-down transmission function is suppressed to zero, while the spin-up transmission function is about 0.25. Therefore, an ideal half-metallic property is achieved. In addition, the phonon thermal conductance is obviously smaller than the electronic thermal conductance. Meantime, the spin Seebeck effects are obviously enhanced at the low-temperature regime (about 80K), resulting in the fact that spin thermoelectric figure of merit can reach about 40. Moreover, the spin thermoelectric figure of merit is always larger than the corresponding charge thermoelectric figure of merit. Therefore, the study shows that they can be used to prepare the ideal thermospin devices.
The CO2 heat pump air conditioning system of new energy vehicle is designed, and the vehicle model of CO2 heat pump module and heat management system is established based on KULI simulation. The effects of refrigerant charge, running time and compressor speed on the heat pump air conditioning system is studied, and the energy consumption is compared with the PTC heating system and the CO2 heat pump air conditioning system without waste heat recovery. The results show that the optimal charge for full-service operation is 750 g; increasing the compressor speed can increase the cooling capacity, so that the refrigerant temperature in the passenger compartment and battery inlet can quickly reach the appropriate temperature, but the COP<sub>h</sub>, COP<sub>c</sub> are reduced by 2.5% and 1.8% respectively. By comparing it with PTC heating and CO2 heat pump air conditioning systems without waste heat recovery, it is found that the energy consumption of this system is only for the PTC heating systems 42.5%, without waste heat recovery carbon dioxide heat pump air conditioning system of 86.6%. It greatly saves energy, but also increased the waste heat recovery function, so that the system supply air temperature increased by 26%, improve passenger cabin comfort. This provides a reference for the future experimental research of CO2 heat pump air conditioning and heat management system.
For five different regions in Kırklareli province, heavy metals; such as Pb, Ni, Cu, Mn, Cd, Cr, Co, Zn, Mo, and Fe in the mixture of leaves and flowers from linden trees (Tilia tomentosa L.) were analyzed by using flame atomic absorption spectroscopy after the samples were dissolved with microwave method. Also, organochloride pesticides; such as ∑BHC: [α-BHC, β-BHC, γ-BHC, and δ-BHC], ∑DDT: [4,4’-DDD, 4,4’-DDE, and 4,4’-DDT], α-Endosulfan, β-Endosulfan, Endosulfan sulfate, Heptachlor, Heptachlor-endo-epoxide, Aldrin, Dieldrin, Endrin aldehyde, Endrin ketone, Endrin and Methoxychlor in these samples were determined by utilizing gas chromatography mass spectroscopy after the samples were prepared for analyses by using QuEChERS method. The metal concentrations in the samples were in the range of 45.3 to 268 mg/kg for Mn, 0.25 to 18.8 mg/kg for Cu, 11.5 to 46.1 mg/kg for Zn, 128 to 1310 mg/kg for Fe, 10.4 to 38.6 mg/kg for Mo, 0.82 to 1.34 mg/kg for Cd, 0 to 6.45 mg/kg for Ni, 0 to 19.2 mg/kg for Pb, and 0 to 8.25 mg/kg for Cr. Moreover, the concentrations of organochloride pesticides in samples were usually determined to be lower than their maximum residue level values given the pesticide residue limit regulation of Turkish Food Codex.
In this study, nano-scale microstructural evolution in 6061-T6 alloy after laser shock processing (LSP) was studied. 6061-T6 alloy plate was subjected to multiple LSP. The LSP treated area was characterized by X-ray diffraction and the microstructure of the samples was analyzed by transmission electron microscopy. Focused Ion Beam (FIB) tools were used to prepare TEM samples in precise areas. It was found that even though aluminum had high stacking fault energy, LSP yielded to formation of ultrafine grains and deformation faults such as dislocation cells, stacking faults. The stacking fault probability (PSF) was obtained in LSP-treated alloy using X-Ray diffraction. Deformation induced stacking faults lead to the peak position shifts, broadening and asymmetry of diffraction. XRD analysis and TEM observations revealed significant densities of stacking faults in LSP-treated 6061-T6 alloy. And mechanical properties of LSP-treated alloy were also determined to understand the hardening behavior with high concentration of structural defects.
Copyright © by EnPress Publisher. All rights reserved.