The coupling coordination degree model is used to analyze the change law of the inherent coupling relationship between the forest economy and the ecological environment system in Heilongjiang Province from 2006 to 2018 and its causes. The results show that by combining the coupling relationship with the relative priority of under-forest economic development, the coupling relationship change can be divided into three stages, the coupling coordination degree from 2006 to 2009 is mainly on the verge of imbalance, and the under-forest economic development lags behind the development of the ecological environment. From 2010 to 2012, the coupling coordination degree changed from the reluctant coupling stage to the stage on the verge of imbalance, and the forest economy was ahead of the ecological environment development. From 2013 to 2018, the degree of coupling and coordination was in the reluctant coupling stage, and the under-forest economy and the ecological environment continued to develop in synchronize and in harmony. Therefore, according to the research results, it is proposed to establish the principle of ecological priority, adhere to the development of characteristics, improve the level of science and technology, and rationally develop the under-forest economic industry, so as to promote the coupling and coordinated development of the under-forest economy and ecological environment system in Heilongjiang Province.
Forest ecological benefit compensation plays a promoting role in improving the enthusiasm of forest ecological builders and maintainers, maintaining the legitimate economic interests of forest owners, and coordinating the fairness between the “clear water and green mountains” protectors and the “gold and silver mountains” beneficiaries. Comprehensive combed the domestic forest ecological benefit compensation mechanism, including the compensation scope, compensation subject, compensation object, the research progress of compensation standard, summarized the forest ecosystem benefits measurement, including physical appraisal method, the value evaluation method, energy analysis method and the characteristics and application research progress of ecological model method. This paper discusses the research status and existing problems of the calculation basis of compensation standard, the origin, research emphasis and progress of forest ecological service payment abroad in recent years, and the mechanism of forest ecological service payment in many countries. Finally, some suggestions are put forward to improve the compensation mechanism of forest ecological benefits in China. On the one hand, it is necessary to broaden the source of funds through various ways of marketization and scientifically evaluate the forest ecological benefits. On the other hand, the compensation standard should be established scientifically and reasonably to achieve different compensation levels or compensation intervals.
The wave effect and the shyness phenomenon in Alnus acuminata (Kunth) are crown parameters rarely studied, but important in the quality of the wood of standing trees, therefore, a morphometric modeling of the crowns of Alnus acuminata in homogeneous forests in the Sierra Norte de Puebla was carried out. In 20 rectangular sites of 1,000 m2, the following were evaluated: total height (TA), normal diameter (ND), crown diameter (CD) and crown cover (CC). The Kruskal Wallis test was applied to data that did not meet the assumption of normality; for those that did, analysis of variance (ANOVA) was used, with Tukey mean comparison tests (α ≤ 0.05). The forest value index was 14.99, so its two-dimensional structure is normal based on DN, AT and CC. Its average slenderness index was 93.52, which makes the tree not very stable to mechanical damage. The life-space index was 38.92, which is high indicating that trees with low intraspecific competition developed better. At the canopy level, a pattern following an upward, oscillatory and constant wave effect was observed in groups of 10 trees. The shyness phenomenon showed an average crack opening of 27.39 cm between canopies, so this phenomenon is well defined for the species. It is concluded that in the crowns of Alnus acuminata, the wave effect is observed as a consequence of inequality in the acquisition of resources, and one way to minimize this inequality is through the phenomenon of botanical shyness.
Forests have ecological functions in water conservation, climate regulation, environmental purification, soil and water conservation, biodiversity protection and so on. Carrying out forest ecological quality assessment is of great significance to understand the global carbon cycle, energy cycle and climate change. Based on the introduction of the concept and research methods of forest ecological quality, this paper analyzes and summarizes the evaluation of forest ecological quality from three comprehensive indicators: forest biomass, forest productivity and forest structure. This paper focuses on the construction of evaluation index system, the acquisition of evaluation data and the estimation of key ecological parameters, discusses the main problems existing in the current forest ecological quality evaluation, and looks forward to its development prospects, including the unified standardization of evaluation indexes, high-quality data, the impact of forest living environment, the acquisition of forest level from multi-source remote sensing data, the application of vertical structural parameters and the interaction between forest ecological quality and ecological function.
Taking the 13 years pure artificial forest Phoebe chekiangensis and heterogeneous mixed forests in Tiantong mountain, Zhejiang Province as the research object, the characteristics of stand development, tree competition differentiation, tree height/breast diameter ratio and dominant wood growth were compared and analyzed from the perspective of ecology. The results show that compared with pure forests, the growth advantages of heterogeneous mixed-age forests were significant. Average breast diameter growth of stand increased 1.8%; the growth of single plant wood accumulation increased 7.4%. The relationship between tree height and diameter showed that the high growth of Phoebe chekiangensis individuals in the heterogeneous mixed forest was significantly promoted, and the high growth of the tree was 8.4% higher than that of pure forest. 1–5 grade wood scale sizes Phoebe chekiangensis in heterogeneous mixed forests and pure forests are ranked grade 3 (43.7%) > grade 2 (26.5%) > grade 4 (15.7%) > grade 1 (12.9%) > grade 5 (1.2%); grade 3 (34.7%) > level 2 (25.6%) > level 4 (20.0%) > level 1 (18.2%) > level 5 (1.2%); the straight-diameter structure shows a normal distribution, and the degree of differentiation of pure forests is greater than that of heterogeneous forests. The dominant trees of Phoebe chekiangensis pure forest and heterogeneous forest accounted for 18.2% and 12.9% of the total number of plants respectively, providing a reserve of 51.1% and 35.4% respectively, reflecting the contribution of dominant trees caused by the self-thinning effect.
Taking six typical forest communities in Taizhou Green Heart (ⅰ: Liquidambar formosana + Ulmus pumila + Celtis sinensis; ⅱ: Celtis sinensis + Pterocarya stenoptera + Pinus massoniana; ⅲ: Sapindus mukorossi + Sapium sebiferum + Cupressus funebris; ⅳ: Liquidambar formosana + Acer buergerianum + Cupressus funebris); ⅴ: Celtis sinensis + Ligustrum compactum + Pinus massoniana; ⅵ: Machilus ichangensis + Sapindus mukorossi + Acer buergerianum) as the research objects, 5 indicators: Shannon-Wiener (H), Patrick richness (R1), Margalef species richness (R2), Pielou evenness (J) and ecological dominance (D) were used to analyze species diversity in forest communities. The results showed that: (1) the community was rich in plant resources, with a total of 50 species belonging to 40 genus and 31 families, including 19 species in tree layer, 22 species in shrub layer and only 9 species in herb layer, few plant species; (2) the species richness and diversity index of tree layer and shrub layer were significantly higher than that of herb layer, but there were differences among different communities in the same layer, and no significant difference was reached; (3) the species richness and community diversity of the six communities showed as follows: community VI > community I > community II > community IV > community V > community III.
Copyright © by EnPress Publisher. All rights reserved.