Objective: This research analyzed the psychometric properties of the Ambivalent Classism Inventory (ICA) in Peru. Methodology: A critical review of literature related to poverty, inequality, and structural gaps was conducted, involving 882 participants aged 14 to 89 years (M = 24.61, SD = 9.07). Results: Exploratory-confirmatory factor analyses were satisfactory, finding a similar factorial structure to the original scale and the adaptation (hostile classism, protective paternalism, and complementary class differentiation). Regarding items, there was a reduction, leaving only 12; however, comparing alternative models, the three-factor structure with 12 reagents showed adequate fit (χ2 = 214.588, df = 51, p < 0.001; CFI = 0.996; RMSEA = 0.060; SRMR = 0.033), allowing for invariance testing. Practical Implications: The scale allows for investigating attitude profiles of individuals with privileged social class. Contribution: The instrument is a valuable contribution, considering that the nation has a high poverty rate, leading to economic, political, and social inequality among the population.
India’s economic growth is of significant interest due to its expanding Gross Domestic Product (GDP) and global market influence. This study investigates the interplay between production, trade, carbon dioxide (CO2) emissions, and economic growth in India using Granger causality analysis. Also, the data from 1994 to 2023 were analyzed to explore the relationships among these variables. The results reveal strong positive correlations among production, trade, CO2 emissions, and GDP, with production showing significant associations with export, import, and GDP. Co-integration tests confirm the presence of a long-term relationship among the variables, suggesting their interconnectedness in shaping India’s economic landscape. Regression analysis indicates that production, export, import, United States (US)-India trade, manufacturing cost of energy, and CO2 emissions significantly impact GDP. Moreover, the Vector Error Correction Model (VECM) estimation reveals both short-term and long-term dynamics, highlighting the importance of understanding equilibrium and deviations in economic variables. Overall, this study contributes to a better understanding of the complex interactions driving India’s economic growth and sustainability.
This article emphasizes the importance of Small and Medium-Sized Enterprises (SMEs) and large companies in driving economic growth. SMEs are labour-intensive and agile, creating more jobs, while large companies are capital-intensive and rely on technology, having more resources for research and development. In the Gulf Cooperation Council (GCC) region, SMEs contribute significantly to Gross Domestic Product (GDP) and job opportunities, while large companies dominate specific sectors. The research employs a multidisciplinary approach using an extensive literature review to summarize the current literature, highlight the economic impact of SMEs and large companies in GCC, and highlight the importance of large companies in developing local citizens. Policy-makers must consider these differences to integrate these dynamic changes for effective support policies. This study examines the economic impact of SMEs and large companies in the GCC region, providing recommendations to support large businesses. It addresses challenges and opportunities related to employment, household earnings, economic output, and value addition. Promoting the economic impact of SMEs and large companies can lead to sustainable economic growth and development in the GCC region. Also, this article pointed out the importance of large companies and their economic impact in the GCC region; policy recommendations will help the governing bodies in decision-making towards promoting sustainable economic growth.
Improving the competitiveness of tourism destinations is crucial for driving local economies and achieving income growth. In light of this evidence, numerous government departments strive to assess specific factors that impact the competitiveness of tourism destinations, enabling them to issue appropriate new tourism policies that promote more effective forms of tourism business. Therefore, the primary objective of this paper is to investigate how various elements such as tourism resources, tourism support, tourism management, location conditions, and tourism demand influence regional competitiveness in the Northern Bay region of Guangxi Province in China. To accomplish this goal, an online survey was conducted to collect data from 420 visitors who had experienced North Gulf Tourism; yielding an impressive response rate of 95 percent. The findings reveal that all aforementioned factors—namely: Tourism resources, tourism support, tourism management, location conditions and tourist demand—significantly impact destination competitiveness. Notably though, it was found that among these factors influencing destination competitiveness; it is primarily determined by effective local-level management (β = 0.345). Following closely behind are tourist demand (β = 0.133) as the second most influential factor affecting destination competitiveness; followed by location conditions (β = 0.116) ranking third; then comes tourist support (β = 0.03) as fourth in line impacting destination competitiveness; finally with least impact being exerted by available tourist resources (β = 0.016). Consequently, highlighting that regional competitiveness within Guangxi’s Northern Bay area predominantly hinges on efficient local-level management practices thus strongly recommending relevant authorities formulate novel work policies aimed at enhancing levels of local-level competitive advantage within the realm of regional touristic offerings.
Copyright © by EnPress Publisher. All rights reserved.