Dust is one of the atmospheric pollutants that have adverse environmental effects and consequences. Dust fall contains particles of 100 microns or even smaller ones, which fall from the atmosphere onto the earth surface. The aim of this study is to determine the concentration of lead in dust fall samples in order to study the pollution level of this element in Zahedan, Sistan and Baluchistan Province, Iran. Therefore, sampling was carried out using 30 marble dust collectors (MDCO) for 3 months in the spring of 2015 to investigate the quantitative variation and spatial analysis of lead content in dust fall. These dust collectors were placed at 30 stations on the building roofs with a height of approximately 1.5 meters across the city. According to the results, the mean lead concentration in the spring was 90.16 mg/kg. In addition, the zoning map of lead content shows that the lowest level of lead was measured at Imam Khomeini station while the highest amount of lead appeared in Mostafa Khomeini station.
The research issue at hand pertains to the intricate mechanisms of state regulation that govern the economy of Kazakhstan, particularly in the context of the international sanctions that have been instituted by the nations comprising the Eurasian Economic Union. In order to thoroughly investigate this complex subject matter, this scholarly paper employs a variety of sophisticated methodologies grounded in bibliometric analyses of the most recent 90 academic papers that focus on the various mechanisms of state regulation pertinent to the economic landscape of Kazakhstan. As a subsequent phase in this research endeavor, the modeling of higher-order moments is undertaken with the express aim of delineating the multifaceted ramifications that stem from a singular and isolated perturbation affecting one of the key variables encapsulated within the higher-order moments model. This detailed analytical approach facilitates an in-depth exploration of both the immediate outcomes and the subsequent values of the endogenous variables that are under scrutiny. The innovative aspect of this article’s findings lies in the comprehensive analysis dedicated to the state regulation of Kazakhstan’s economy, which is significantly influenced by the international sanctions that have been imposed by member countries of the Eurasian Economic Union. The outcomes of this research provide a methodical and scientifically rigorous framework for understanding the overarching system of state regulation, which is of paramount importance for cultivating sustainable development within the socio-economic dynamics that characterize the nation of Kazakhstan.
The present study demonstrates the fabrication of heterogeneous ternary composite photocatalysts consisting of TiO2, kaolinite, and cement (TKCe),which is essential to overcome the practical barriers that are inherent to currently available photocatalysts. TKCe is prepared via a cost-effective method, which involves mechanical compression and thermal activation as major fabrication steps. The clay-cement ratio primarily determines TKCe mechanical strength and photocatalytic efficiency, where TKCe with the optimum clay-cement ratio, which is 1:1, results in a uniform matrix with fewer surface defects. The composites that have a clay-cement ratio below or above the optimum ratio account for comparatively low mechanical strength and photocatalytic activity due to inhomogeneous surfaces with more defects, including particle agglomeration and cracks. The TKCe mechanical strength comes mainly from clay-TiO2 interactions and TiO2-cement interactions. TiO2-cement interactions result in CaTiO3 formation, which significantly increases matrix interactions; however, the maximum composite performance is observed at the optimum titanate level; anything above or below this level deteriorates composite performance. Over 90% degradation rates are characteristic of all TKCe, which follow pseudo-first-order kinetics in methylene blue decontamination. The highest rate constant is observed with TKCe 1-1, which is 1.57 h−1 and is the highest among all the binary composite photocatalysts that were fabricated previously. The TKCe 1-1 accounts for the highest mechanical strength, which is 6.97 MPa, while the lowest is observed with TKCe 3-1, indicating that the clay-cement ratio has a direct relation to composite strength. TKCe is a potential photocatalyst that can be obtained in variable sizes and shapes, complying with real industrial wastewater treatment requirements.
This report intends to enhance the reviews on leadership literature by conducting a bibliometric study on 198 publications focused on transformational leadership research. These papers were published in the Scopus database between 1997 and 2023. Employing quantitative bibliometric analysis, the study aims to identify both current and prospective research trajectories pertaining to transformational leadership issues. To the best of our current understanding, there exists no scholarly investigation that examines the bibliographic data pertaining to transformational leadership domains. Therefore, this work represents a distinctive and original contribution to the existing body of literature. This study additionally offers a comprehensive examination of the patterns and paths inside a visual and schematic framework for the investigation of this subject matter. This may facilitate researchers in comprehending the prevailing patterns and prospective avenues for research, so empowering future authors to carry out their investigations with greater efficacy. There exists a number of underexplored themes or subjects pertaining to transformational leadership matters, such as knowledge sharing, leadership styles, digital transformation, innovative work behavior, competitive advantage and digital transformation. This discovery offers useful insights into the heterogeneous nature of this area across multiple disciplines.
Plum (Prunus domestica) is a seasonal nutraceutical fruit rich in many functional food nutrients such as vitamin C, antioxidants, total phenolic content, and minerals. Recently, researchers have focused on improvised technologies for the retention of bioactive compounds during the processing of perishable fruits; plum is one of these fruits. This study looked at how the percentage of moisture content and percentage of acidity were affected by conventional drying and osmotic dehydration. Total phenolic content (mg GA/100 g of plum), total anthocyanin content (mg/100 g), and vitamin C (mg/100 g) Conventional drying of fruit was carried out at 80.0 ℃ for 5 h. At various temperatures (45.0 ℃, 50.0 ℃, and 55.0 ℃) and hypertonic solution concentrations (65.0 B, 70.0 B, and 75.0 B), the whole fruit was osmotically dehydrated. It was observed that the osmotically treated fruit retains more nutrients than conventionally dried fruit. The total phenolic content of fruit significantly increased with the increase in process temperature. However, vitamin C and total anthocyanin content of the fruit decreased significantly with process temperature, and hypertonic solution concentration was observed. Hence, it was concluded that osmodehydration could be employed for nutrient retention in plum fruit over conventional drying. This process needs to be further refined, improvised, and optimised for plum processing.
Copyright © by EnPress Publisher. All rights reserved.