Carbon-based hollow structured nanomaterials have become one of the hot areas for research and development of hollow structured nanomaterials due to their unique structure, excellent physicochemical properties and promising applications. The design and synthesis of novel carbon-based hollow structured nanomaterials are of great scientific significance and wide application value. The recent research on the synthesis, structure and functionalization of carbon-based hollow structured nanomaterials and their related applications are reviewed. The basic synthetic strategies of carbon-based hollow structure nanomaterials are briefly introduced, and the structural design, material functionalization and main applications of carbon-based hollow structure nanomaterials are described in detail. Finally, the current challenges and opportunities in the synthesis and application of carbon-based hollow structured nanomaterials are discussed.
This work shows the results of the biosynthesis of silver nanoparticles using the microalga Chlorella sp, using growth media with different concentrations of glycerol, between 5%–20%, and different light and temperature conditions. The synthesis of nanoparticles was studied using supernatants and pellets from autotrophic, heterotrophic and mixotrophic cultures of the microalga. The presence of nanoparticles was verified by ultraviolet-visible spectroscopy and the samples showing the highest concentration of nanoparticles were characterized by scanning electron microscopy. The mixotrophic growth conditions favored the excretion of exopolymers that enhanced the reduction of silver and thus the formation of nanoparticles. The nanoparticles obtained presented predominantly ellipsoidal shape with dimensions of 108 nm × 156 nm and 87 nm × 123 nm for the reductions carried out with the supernatants of the mixotrophic cultures with 5% and 10% glycerol, respectively.
Species of the Moraceae family are of great economic, medicinal and ecological importance in Amazonia. However, there are few studies on their diversity and population dynamics in residual forests. The objective was to determine the composition, structure and ecological importance of Moraceae in a residual forest. The applied method was descriptive and consisted of establishing 16 plots of 20 m × 50 m (0.10 ha), in a residual forest of the Alexánder von Humboldt substation of the National Institute of Agrarian Innovation-INIA, Pucallpa, department of Ucayali, where individuals of arboreal or hemi-epiphytic habit, with DBH ≥ 2.50 cm, were evaluated. The floristic composition was represented by 33 species, distributed in 12 genera; five species not recorded for Ucayali were found. Structurally, the family was represented by 138 individuals/ha with a horizontal distribution similar to an irregular inverted “J”. However, there were different horizontal structures among species. It was determined that 85% of the species were in diameter class I (2.50 to 9.99 cm), being the most abundant Pseudolmedia laevis (Ruiz & Pav.) J.F. Macbr. (41.88 individuals/ha); and the most dominant were Brosimum utile (Kunth) Oken (1.71 m2∕ha) and Brosimum alicastrum subsp. bolivarense (Pittier) C.C.Berg (0.90 m2/ha). Likewise, P. laevis and B. utile were the most ecologically important. The information from the present research will allow the establishment of a baseline, which can be used to propose the management of Moraceae in residual forests in the same study area.
Over the past decade, Ontario has seen a renewal in efforts to stimulate economic growth by investing in infrastructures. In this paper, we analyze the impact of public infrastructure investment on economic performance in this province. We use a multivariate dynamic time series methodological approach, based on the use of vector autoregressive models to estimate the elasticities and marginal products of six different types of public infrastructure assets on private investment, employment and output. We find that all types of public investment crowd in private investment while investment in highways, roads, and bridges crowds out employment. We also find that all types of public investment, with the exception of highways, roads and bridges, have a positive effect on output. The relatively large range of results estimated for the impact of each of the different public infrastructure types suggests that a targeted approach to the design of infrastructure investment policy is required. Infrastructure investment in transit systems and health facilities display the highest returns for output and the largest effects on employment and labor productivity. In terms of the nature of the empirical results presented here it would be important to highlight the fact that investments in health infrastructures as well as investments in education infrastructures are of great relevance. This is a pattern consistent with the mounting international evidence on the importance of human capital for long term economic performance.
A theoretical investigation of the effect of an inverse parabolic potential on third harmonic generation in cylindrical quantum wires is presented. The wave functions are obtained as solutions to Schrödinger equation solved within the effective mass approximation. It turns out that peaks of the third harmonic generation susceptibility (THGS) associated with nanowires of small radii occur at larger photon energies as compared to those associated with quantum wires of larger radii. The inverse parabolic potential red-shifts peaks of the THGS, and suppresses the amplitude of the THGS. THGS associated with higher radial quantum numbers is diminished in magnitude and blue-shifted, as a function of the photon energy. As a function of the inverse parabolic potential, the THGS still characterized by peaks, and the peaks shift to lower values of the potential as the photon energy increases.
In the domains of geological study, natural resource exploitation, geological hazards, sustainable development, and environmental management, lithological mapping holds significant importance. Conventional approaches to lithological mapping sometimes entail considerable effort and difficulties, especially in geographically isolated or inaccessible regions. Incorporating geological surveys and satellite data is a powerful approach that can be effectively employed for lithological mapping. During this process, contemporary RS-enhancing methodologies demonstrate a remarkable proficiency in identifying complex patterns and attributes within the data, hence facilitating the classification of diverse lithological entities. The primary objective of this study is to ascertain the lithological units present in the western section of the Sohag region. This objective will be achieved by integrating Landsat ETM+ satellite imagery and field observations. To achieve our objectives, we employed many methodologies, including the true and false color composition (FCC&TCC), the minimal noise fraction (MNF), principal component analysis (PCA), decoration stretch (DS), and independent component analysis (ICA). Our findings from the field investigation and the data presented offer compelling evidence that the distinct lithological units can be effectively distinguished. A recently introduced geology map has been incorporated within the research area. The sequence of formations depicted in this map is as follows: Thebes, Drunka, Katkut, Abu Retag, Issawia, Armant, Qena, Abbassia, and Dandara. Implementing this integrated technique enhances our comprehension of geological units and their impacts on urban development in the area. Based on the new geologic map of the study area, geologists can improve urban development in the regions by detecting building materials “aggregates”. This underscores the significance and potential of our research in the context of urban development.
Copyright © by EnPress Publisher. All rights reserved.