With the gradual acceleration of China's adaptation to the global environment, the country's demand for English talents is growing. In recent years, with the continuous innovation of the education system, English education in higher vocational colleges is also undergoing optimization and innovation. Language and literature are closely related. English language and literature education in higher vocational colleges aims to cultivate high-quality talents who can flexibly use English language and literature for communication. It can be seen that teachers in higher vocational colleges need to focus on cultivating students' application ability of English language and literature in the teaching process. By analyzing the current situation of English language and literature teaching in higher vocational colleges, this paper expounds its significance and puts forward corresponding countermeasures, hoping to promote the development and progress of English language and literature education in higher vocational colleges.
Introduction: The selection of genotypes with determinate growth habit in tomato should contemplate adequate selection criteria to increase the efficiency of the breeding program. Objective: The objective of this work was to estimate selection criteria for “chonto” type tomato lines with determined growth habit. Materials and methods: This work was carried out at the Universidad Nacional de Colombia (Palmira Campus), in 2016, with seven lines with determinate growth habit and a control with indeterminate growth. Heritability in a broad sense (h2 g), coefficient of environmental variation, coefficient of genetic variation, selection efficiency and genetic gain were determined in parameters of morphological, phonological, fruit quality, fruit shape and production, using the RELM/BLUP procedure of the SELEGEN software. Results: There were three ranges of h2 g, the first with values of h2 g greater than 0.76, the second between 0.53 and 0.38, and the third with a value less than 0.38. The highest values of h2 g were for final plant height with 0.92, plant height at harvest with 0.88, yield per plant with 0.83, days to flowering with 0.83, number of fruits per plant with 0.82, and days to harvest with 0.82. For genetic gain it was found that the control had the highest values for final plant height, plant height at harvest, internode length, days to harvest, harvest duration, soluble solids content, number of fruits per plant, fruit weight and yield per plant; however, in some parameters such as height and phenology for selection by determined growth habit, the lowest values were better. Conclusion: There was evidence of genetic parameters that could be considered as selection criteria for “chonto” type tomato lines with determinate growth habit.
One of the main concerns in computer science today is integrating the Internet of Things (IoT) into manufacturing processes. This trend could influence a country’s strategy and policy development regarding technological infrastructure. However, despite extensive research on the implementation of IoT in manufacturing, no study has yet focused on the growing research interest in this topic. Based on 2487 papers indexed in the Scopus database between 2013 and 2023, this bibliometric review examines current trends and patterns in IoT research in manufacturing. The literature was selected and screened using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. Data visualization was created using VOSviewer. The results show a notable increase in research papers centered around IoT in manufacturing. The findings reveal patterns and trends in IoT research publications in the manufacturing sector, author collaboration networks, country collaboration networks, and both established and newly trending topics surrounding IoT in the manufacturing industry.
The possibility of preoperative prediction of pathologic complete response in rectal cancer has been studied in order to identify patients who would respond to neoadjuvant therapy and to individualize therapeutic strategies. Endoscopic ultrasound of the rectum is an accurate method for the evaluation of local tumor and lymph node invasion. Objective: To evaluate the potential of endoscopic ultrasound as a predictor of complete pathological response to neoadjuvant treatment in patients with locally advanced rectal cancer. Material and methods: Retrospective study of patients with rectal cancer from January 2014 to December 2016. Results: We obtained a statistical association between T stage by endoscopic ultrasound and complete pathological response (p = 0.015). It is not so for N, sphincter involvement, circumferential involvement and maximum tumor thickness (p = 0.723, p = 0.510, p = 0.233 and p = 0.114, respectively). When multivariate logistic regression analysis was applied to assess the degree of influence of the predictor variables on pathologic response, none of these variables was associated with complete pathologic response. Conclusion: Prediction of pathologic complete response in rectal cancer has been considered as the crucial point upon which treatments for rectal cancer could be individualized. So far, no imaging method has been able to demonstrate efficacy in predicting complete pathologic response, and in turn there is no direct association between any endosonographic finding that can accurately predict it.
To address the problem that the imaging inversion method based on a single model in integrated aperture imaging is difficult to effectively correct model errors and perform accurate image reconstruction, a dual-model (DM)-based integrated aperture imaging inversion method is proposed for correcting the parametric errors of the inversion model and performing highly accurate millimeter-wave image reconstruction of the target scene. In view of the different parameter sensitivities of the Fourier transform (MFFT) model and the G-matrix (GM) model, the proposed DM method first corrects the imaging parameters with errors accurately by comparing the reconstruction errors of the two models; then recon-structs a high-precision target image based on the accurate GM model with the help of an improved regularization method. It is proved by simulation experiments that the proposed DM method can effectively correct the parameter errors of the imaging model and reconstruct the target scene with high accuracy in millimeter wave images compared with the traditional single-model imaging method.
Metamaterial perfect absorber is very important in the study of refractive index sensor. The time domain finite difference method is used to simulate the surface plasmon structure. The double nanorod periodic structure is designed, and the parameters of the top layer structure are optimized according to the impedance matching principle, and the absorption rate of the structure to the light wave reaches 99.6% when the wavelength is about 12 mm. The absorption spectroscopy of the structure is studied with the change of the refractive index of the spatial medium around the structure, and the sensitivity of the double nanorod structure is 4,008 nm/RIU, which can be used to measure the refractive index of the gas.
Copyright © by EnPress Publisher. All rights reserved.