Researchers from all over the world have been working tirelessly to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic since the World Health Organization (WHO) proclaimed it to be a pandemic in 2019. Expanding testing capacities, creating efficient medications, and creating safe and efficient COVID-19 (SARS CoV-2) vaccinations that provide the human body with long-lasting protection are a few tactics that need to be investigated. In clinical studies, drug delivery techniques, including nanoparticles, have been used since the early 1990s. Since then, as technology has advanced and the need for improved medication delivery has increased, the field of nanomedicine has recently seen significant development. PNPs, or polymeric nanoparticles, are solid particles or particulate dispersions that range in size from 10 to 1000 nm, and their ability to efficiently deliver therapeutics to specific targets makes them ideal drug carriers. This review article discusses the many polymeric nanoparticle (PNP) platforms developed to counteract the recent COVID-19 pandemic-related severe acute respiratory syndrome coronavirus (SARS-CoV-2). The primary subjects of this article are the size, shape, cytotoxicity, and release mechanism of each nanoparticle. The two kinds of preparation methods in the synthesis of polymeric nanoparticles have been discussed: the first group uses premade polymers, while the other group depends on the direct polymerization of monomers. A few of the PNPs that have been utilized to combat previous viral outbreaks against SARS-CoV-2 are also covered.
Healthcare mobile applications satisfy different aims by frequently exploiting the built-in features found in smart devices. The accessibility of cloud computing upgrades the extra room, whereby substances can be stored on external servers and obtained directly from mobile devices. In this study, we use cloud computing in the mobile healthcare model to reduce the waste of time in crisis healthcare once an accident occurs and the patient operates the application. Then, the mobile application determines the patient’s location and allows him to book the closest medical center or expert in some crisis cases. Once the patient makes a reservation, he will request help from the medical center. This process includes pre-registering a patient online at a medical center to save time on patient registration. The E-Health model allows patients to review their data and the experiences of each specialist or medical center, book appointments, and seek medical advice.
Vietnamese e-commerce has recently experienced a robust growth, especially e-commerce platforms such as Shopee, Lazada, Tiki. Reverse logistics has been pointed out as having a significant impact on the performance of an e-commerce platform. To capture the actual impact of some reverse logistics factors, i.e, Return Processing Time (RPT), Return Policy (RP), Return Cost (RC), Customer Service (CSR), and Post-Return Product (PRP), on Customer Satisfaction (CS), an OLS model was conducted. The results indicated significant correlation between all independent variables and dependent variables, which CSR shows the greatest correlation and PRP shows the weakest correlation. The study then made some suggestions for e-commerce platforms in Vietnam to enhance their reverse logistics process to get higher customer satisfaction.
Our environment has been significantly impacted by man-made pollutants, primarily due to industries making substantial use of synthetic chemicals, resulting in significant environmental consequences. In this research investigation, the co-precipitation approach was employed for the synthesis of cellulose-based ferric oxide (Fe2O3/cellulose) and copper oxide nanoparticles (CuOx-NPs). Scanning electron microscopy (SEM) analyses were conducted to determine the properties of the newly synthesised nanoparticles. Furthermore, the synthesized nanoparticles were employed for eliminating chromium from aqueous media under various conditions, including temperature, contact time, adsorbent concentration, adsorbate concentration, and pH. Additionally, the synthesised materials were used to recover Cr(VI) ions from real samples, including tap water, seawater, and industrial water, and the adsorptive capacity of both materials was evaluated under optimal conditions. The synthesis of Fe2O3/cellulose and CuOx-NPs proved to be effective, as indicated by the outcomes of the study.
ZnO nanostructures were obtained by electrodeposition on Ni foam, where graphene was previously grown by chemical vapor deposition (CVD). The resulting heterostructures were characterized by X-ray diffraction and SEM microscopy, and their potential application as a catalyst for the photodegradation of methylene blue (MB) was evaluated. The incorporation of graphene to the Ni substrate increases the amount of deposited ZnO at low potentials in comparison to bare Ni. SEM images show homogeneous growth of ZnO on Ni/G but not on bare Ni foam. A percent removal of almost 60% of MB was achieved by the Ni/G/ZnO sample, which represents a double quantity than the other catalysts proved in this work. The synergistic effects of ZnO-graphene heterojunctions play a key role in achieving better adsorption and photocatalytic performance. The results demonstrate the ease of depositing ZnO on seedless graphene by electrodeposition. The use of the film as a photocatalyst delivers interesting and competitive removal percentages for a potentially scalable degradation process enhanced by a non-toxic compound such as graphene.
Plant growth-promoting rhizobacteria (PGPR) offer eco-friendly alternatives to chemical fertilizers, promoting sustainable agriculture by enhancing soil fertility, reducing pathogens, and aiding in stress resistance. In agriculture, they play a crucial role in plant growth promotion through the production of agroactive compounds and extracellular enzymes to promote plant health and protection against phytopathogens. In the rhizosphere, diverse microbial interactions, including those with bacteria and fungi, influence plant health by production of antimicrobial compounds. The antagonism displayed by rhizobacteria plays a crucial role in shaping microbial communities and has potential applications in developing a natural and environmentally friendly approach to pest control. The rhizospheric microbes showcase their ecological importance and potential for biotechnological applications in the context of plant-microbe interactions. The extracellular enzymes produced by rhizospheric microbes like amylases, chitinases, glucanases, cellulases, proteases, and ACC deaminase contribute to plant processes and stress response emphasizing their importance in sustainable agriculture. Moreover, this review highlights the new paradigm including artificial intelligence (AI) in sustainable horticulture and agriculture as a harmonious interaction between ecological networks for promoting soil health and microbial diversity that leads to a more robust and self-regulating agricultural system for protecting the environment in the future. Overall, this review emphasizes microbial interactions and the role of rhizospheric microbial extracellular enzymes which is crucial for developing eco-friendly approaches to enhance crop production and soil health.
Copyright © by EnPress Publisher. All rights reserved.