This study focuses on the competency structure factors of elementary school English teachers under China’s new curriculum standards, aiming to reveal the core competencies that teachers should possess in the context of education in the new era. Through the comprehensive application of qualitative interviews and quantitative questionnaire survey methods, this study provides an in-depth analysis of the competency structure of primary English teachers. It was found that the competency structure of elementary school English teachers is mainly composed of six dimensions: professionalism, personality traits, teaching ability, student views, teaching organization strategy and research ability. These dimensions work together to influence teachers’ teaching effectiveness and students’ learning effectiveness. The study also found that there were significant differences in the competency characteristics of elementary school English teachers across gender, teaching experience and educational qualifications. In general, this study provides a theoretical basis and practical guidance for the professional development of elementary school English teachers, which can help to improve the quality of teachers’ teaching and promote the comprehensive development of students.
Alginate-silver nanocomposites in the form of spherical beads and films were prepared using a green approach by using the aqueous extract of Ajwa date seeds. The nanocomposites were fabricated by in situ reduction and gelation by ionotropic crosslinking using calcium ions in solution. The rich phytochemicals of the date seed extract played a dual role as a reducing and stabilizing agent in the synthesis of silver nanoparticles. The formation of silver nanoparticles was studied using UV-Vis absorption spectroscopy, and a distinct surface plasmon resonance peak at 421 nm characteristic of silver nanoparticles confirmed the green synthesis of silver nanoparticles. The morphology of the nanocomposite beads and film was compact, with an even distribution of silver nanoclusters. The catalytic property of the nanocomposite beads was evaluated for the degradation of 2-nitrophenol in the presence of sodium borohydride. The degradation followed pseudo-first-order kinetics with a rate constant of 1.40 × 10−3 s−1 at 23 ℃ and an activation energy of 18.45 kJ mol−1. The thermodynamic parameters, such as changes in enthalpy and entropy, were evaluated to be 15.22 kJ mol−1 and −197.50 J mol−1 K−1, respectively. The nanocomposite exhibited properties against three clinically important pathogens (gram-positive and gram-negative bacteria).
The Carthamus tinctorius, commonly known as safflower, is an annual plant with numerous branches and thorns from the Asteraceae family. For this experiment, three treatments were applied to the pots: humic acid, spirulina microalgae, and a mixture of both to analyze their bioactivation effects. These treatments were applied three times per week over the course of two weeks, with irrigation taking place every other day. The wet weight of the aerial parts of the harvested plants was measured and placed in liquid nitrogen, then stored in a freezer. Chlorophyll, carotenoids, proline, protein, phenol, antioxidants, and malondialdehyde were measured. The results show that several bioactivators significantly increased the growth, chlorophyll, carotenoids, protein, and proline of safflower plants when compared to the control. The three treatments reduced the antioxidant and malondialdehyde content significantly. In contrast to the control condition, the mixture of humic acid and spirulina microalgae, as well as humic acid alone, decreased the phenolic content. The findings demonstrated that humic acid and spirulina microalgae can serve as positive plant bioactivators for safflower by boosting its growth and reducing stress.
The objective of this work was to evaluate the combined effect of bovine manure, Pseudomonas putida and Trichoderma aureoviride on the development of lettuce (Lactuca sativa). The promotion of plant growth by microorganisms may be a viable and sustainable alternative for lettuce crop management. The experimental design was entirely randomized with five treatments: T0 (witness without fertilization, P. putida and T. aureoviride), TE (cattle manure), TEB (cattle manure + P. putida), TEF (cattle manure + T. aureoviride), TEFB (cattle manure + P. putida + T. aureoviride) and ten repetitions each. The following variables were analyzed: germination velocity index (GVI), first count (FC), germination percentage (GP), leaf area index and productivity. The TEFB treatment proved to be a viable alternative for the production of lettuce, especially for small producers, since all the vegetable production in the region comes from family farming.
Flash flood is one of the major natural hazards in China. It seriously threatens the lives of people and property in mountainous areas. Various methods have been developed for flash flood study, but most of them focused on the past few decades. As one of the effective methods of historical flash flood events reconstruction, dendrogeomorphology has been used worldwide. It can provide hazard information with long temporal scale and high temporal resolution, sometimes at the seasonal level. By comparing tree ring width and other growth characteristics between disturbed and undisturbed trees, growth disturbance signals can be found in the disturbed trees. Using the growth disturbance in tree rings, flash flood events can be dated, and then the frequency, size, and spatial distribution characteristics of flash floods that have no or little documentary records can be reconstructed. The discharge of flash flood can be reconstructed quantitatively according to the height of scars or by using hydraulic models. With the development of dendrogeomorphology, research tends to probe into the meteorological driving mechanism of flash floods and the pattern of flash floods on a larger spatial scale. In the practical application of dendrogeomorphology, more instrumental data and historical records are applied in the studies. This makes the method increasingly more widely used around the world. But work based on dendrogeomorphology has not been reported in China. In this article, we reviewed the development of the study on flash floods based on tree ring, briefly summarized the research progress, and discussed the advantages, limitations, and potential of this approach, so as to provide some reference information for relevant work in China.
The Belt and Road Initiative (BRI) aims to enhance connectivity and collaboration among 60 countries and beyond in Asia, Africa and Europe. Information and communications technology (ICT) is an indispensable component of the initiative, critical in providing fundamental communication channels for global financial transactions, trade exchanges and transport and energy connectivity, and socio cultural collaboration and scientific exchanges between people, organizations and countries along the BRI corridors. Previously constrained by infrastructure deficits in ICT, the Asia-Pacific region is accelerating its efforts to provide reliable and affordable broadband networks throughout the region, to contribute to successful implementation of the Sustainable Development Goals (SDG).
Within the BRI corridors, this study which has been undertaken as part of the research programme of the United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) on promoting regional economic cooperation and integration, focuses on the China-Central Asia Corridor (China, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan), giving attention to the sub-region’s specific challenges, namely limited international transit opportunities and an increase in bandwidth requirements that is expected to grow exponentially, as the fourth industrial evolution centered on automation and artificial intelligence gathers momentum. The sub-region is characterized as highly dependent on the ease and costs of connecting to neighboring countries for transit, as many countries in the sub-region are landlocked developing countries (LLDC). Because of the geographical features and other factors, the development potential of Central Asia and its integration into globalization, continues to be stymied by insufficient international bandwidth and high transit costs to access international links. Therefore, improved ICT connectivity in Central Asia through the BRI corridor could result in improved availability and affordability of broadband networks and services in the sub-region.
For the purpose of this study, a gap analysis is the methodology that underpins the proposed topology for the China-Central Asia Corridor. The analysis included examining the current state of the optic infrastructure, such as existing and planned fiber-optic networks, existing Internet Exchange Points (IXPs) and international gateways. The study also identifies the key factors that determine the desired future state of infrastructure deployment for the BRI initiative. A topology that consists of connecting Almaty (Kazakhstan) and Urumqi (China), as core nodes, is proposed based on a partial mesh topology. Over and above this core finding, the study concludes that digital infrastructure connectivity has a tendency of lagging behind the rapid opportunities evolving, and the study therefore advocates for sub-regional and regional approaches, including the BRI and Asia-Pacific Information Superhighway (AP-IS) in further expanding regional broadband networks. A key recommendation of the study is co-deployment of broadband infrastructure along passive infrastructure, as an additional cost effective means of achieving fast and affordable broadband connectivity for all.
Copyright © by EnPress Publisher. All rights reserved.