The article undertakes an exploration into the rather unexpected progressiveness exhibited by courts across the globe in bestowing protection upon LGBTQ rights. A three-pronged study, which encompasses an examination of the theoretical rationales, empirical investigations, and doctrinal underpinnings of the augmentation of LGBTQ rights in diverse locales, is executed. It is hypothesized that a prima facie paradox emerges, whereby LGBTQ rights have been safeguarded and advanced in an extraordinary fashion, while concurrently, a discernible general trend of deviation from liberal constitutionalism, rights safeguarding mechanisms, and the rule of law is observable in other arenas. This article scrutinizes this contention and discovers that it is substantiated by case law from various regions. Critical theory and Butler’s theory of performativity potentially offer the most cogent explanations for this paradox. They have led to the social embrace of LGBTQ rights, while simultaneously, the enactment or amplification of these rights even in illiberal states furnishes an effortless ‘triumph’ for illiberal political actors, which can be employed as a countermeasure against assaults on their liberal and democratic reputations.
Freshwater problems in coastal areas include the process of salt intrusion which occurs due to decreasing groundwater levels below sea level which can cause an increase in salt levels in groundwater so that the water cannot be used for water purposes, human consumption and agricultural needs. The main objective of this research is to implementation of RWH to fulfill clean water needs in tropical coastal area in Tanah Merah Village, Indragiri Hilir Regency, with the aim of providing clean water to coastal communities. The approach method used based on fuzzy logic (FL). The model input data includes the effective area of the house’s roof, annual rainfall, roof runoff coefficient, and water consumption based on the number of families. The BWS III Sumatera provided the rainfall data for this research, which was collected from the Keritang rainfall monitoring station during 2015 and 2021. The research findings show that FL based on household scale RWH technology is used to supply clean water in tropical coastal areas that the largest rainwater contribution for the 144 m2 house type for the number of residents in a house of four people with a tank capacity of 29 m2 is 99.45%.
Diagnosis-related groups (DRGs) are gaining prominence in healthcare systems worldwide to standardize potential payments to hospitals. This study, conducted across public hospitals, investigates the impact of DRG implementation on human resource allocation and management practices. The research findings reveal significant changes in job roles and skill requirements based on a mixed-methods approach involving 70 healthcare professionals across various roles. 50% of respondents reported changes in daily responsibilities, and 42% noted the creation of new roles in their organizations. Significant challenges include inadequate training (46%), and coding complexity (38%). Factor analysis revealed a complex relationship between DRG familiarity, job satisfaction, and staff morale. The study also found a moderate negative correlation between the impact on morale and years of service in the current hospital, suggesting that longer-tenured staff may require additional support in adapting to DRG systems. This study addresses a knowledge gap in the human resource aspects of DRG implementation. It provides healthcare administrators and policymakers with evidence to inform strategies for effective DRG adoption and workforce management in public hospitals.
Cities play a key role in achieving the climate-neutral supply of heating and cooling. This paper compares the policy frameworks as well as practical implementation of smart heating and cooling in six cities: Munich, Dresden and Bad Nauheim in Germany; and Jinan, Chengdu and Haiyan in China, to explore strategies to enhance policy support, financial mechanisms, and consumer engagement, ultimately aiming to facilitate the transition to climate-neutral heating and cooling systems. The study is divided into three parts: (i) an examination of smart heating and cooling policy frameworks in Germany and China over the past few years; (ii) an analysis of heating and cooling strategies in the six case study cities within the context of smart energy systems; and (iii) an exploration of the practical solutions adopted by these cities as part of their smart energy transition initiatives. The findings reveal differences between the two countries in the strategies and regulations adopted by municipal governments as well as variations within each country. The policy frameworks and priorities set by city governments can greatly influence the development and implementation of smart heating and cooling systems. The study found that all six cities are actively engaged in pioneering innovative heating and cooling projects which utilise diverse energy sources such as geothermal, biomass, solar, waste heat and nuclear energy. Even the smaller cities were seen to be making considerable progress in the adoption of smart solutions.
Introduction: With the adoption of the rural rehabilitation strategy in recent years, China’s rural tourist industry has entered a golden age of growth. Due to the lack of management and decision-support systems, many rural tourist attractions in China experience a “tourist overload” problem during minor holidays or Golden Week, an extended vacation of seven or more consecutive days in mainland China formed by transferring holidays during a specific holiday period. This poses a severe challenge to tourist attractions and relevant management departments. Objective: This study aims to summarize the elements influencing passenger flow by examining the features of rural tourist attractions outside China’s largest cities. Additionally, the study will investigate the variations in the flow of tourists. Method: Grey Model (1,1) is a first-order, single-variable differential equation model used for forecasting trends in data with exponential growth or decline, particularly when dealing with small and incomplete datasets. Four prediction algorithms—the conventional GM(1,1) model, residual time series GM(1,1) model, single-element input BP neural network model, and multi-element input BP network model—were used to anticipate and assess the passenger flow of scenic sites. Result: The multi-input BP neural network model and residual time series GM(1,1) model have significantly higher prediction accuracy than the conventional GM(1,1) model and unit-input BP neural network model. A multi-input BP neural network model and the residual time series GM(1,1) model were used in tandem to develop a short-term passenger flow warning model for rural tourism in China’s outskirts. Conclusion: This model can guide tourists to staggered trips and alleviate the problem of uneven allocation of tourism resources.
Copyright © by EnPress Publisher. All rights reserved.