This article emphasizes the critical role of the subsidiarity principle in facilitating adaptation to climate change. Employing a comparative legal analysis approach, the paper examines how this principle, traditionally pivotal in distributing powers within the European Union, could be adapted globally to manage climate change displacement. Specifically, it explores whether subsidiarity can surmount the challenges posed by national sovereignty and states’ reluctance to cede control over domestic matters. Findings indicate that while domestic efforts and local adaptations should be prioritized, international intervention becomes imperative when national capacities are overwhelmed. This article proposes that ‘causing countries’ and the global community bear a collective responsibility to act. The Asia-Pacific region, characterized by diverse and vulnerable ecosystems like small islands, coastal areas, and mountainous regions, serves as the focal point for this study. The research underscores the necessity of developing policies and further research to robustly implement the subsidiarity principle in protecting climate-displaced populations.
The Indonesian government is currently carrying out massive infrastructure development, with a budget exceeding 10. Risk mapping based on good risk management is crucial for stakeholders in organizing construction projects. Projects financed by government, whether solicited or unsolicited schemes, should also include risk mapping to add value and foster partnerships. Therefore, this study aimed to develop a risk management model for solicited and unsolicited projects, focusing on the collaborative management system among stakeholders in government-financed projects. Risk review was conducted from various stakeholders’ perspectives, examining the impacts and potential losses to manage uncertainty and reduce losses for relevant parties. Furthermore, qualitative analysis was conducted using Focus Group Discussion (FGD) and in-depth interviews. The results showed that partnering-based risk management with risk sharing in solicited and unsolicited projects had similarities with Integrated Project Delivery (IPD). This approach provided benefits and value by developing various innovations in the project life cycle.
The fifth-generation technology standard (5G) is the cellular technology standard of this decade and its adoption leaves room for research and disclosure of new insights. 5G demands specific skillsets for the workforce to cope with its unprecedented use cases. The rapid progress of technology in various industries necessitates a constant effort from workers to acquire the latest skills demanded by the tech sector. The successful implementation of 5G hinges on the presence of competent individuals who can propel its progress. Most of the existing works related to 5G explore this technology from a multitude of applied and industrial viewpoints, but very few of them take a rigorous look at the 5G competencies associated with talent development. A competency model will help shape the required educational and training activities for preparing the 5G workforce, thereby improving workforce planning and performance in industrial settings. This study has opted to utilize the Fuzzy Delphi Method (FDM) to investigate and evaluate the perspectives of a group of experts, with the aim of proposing a 5G competency model. Based on the findings of this study, a model consisting of 46 elements under three categories is presented for utilization by any contingent of 5G. This competency model identifies, assesses, and introduces the necessary competencies, knowledge, and attributes for effective performance in a 5G-related job role in an industrial environment, guiding hiring, training, and development. Companies and academic institutions may utilize the suggested competency model in the real world to create job descriptions for 5G positions and to develop curriculum based on competencies. Such a model can be extended beyond the scope of 5G and lay the foundation of future wireless cellular network competency models, such as 6G competency models, by being refined and revised.
This research intends to find out the compliance acts based on the manufacturing industry of Bangladesh and lead to the development of the integrated theory of compliance model. There are several compliance regulations, that are separately dealt with in any manufacturing organization. These compliance regulations are handled at various ends of the organization making the process quite scattered, time-consuming, and tedious. To fix this problem, the integration of organizational compliance regulations is brought under one platform. Researchers have applied the qualitative approach with multiple case studies methodology scrutinizing the in-depth interviews and transcripts. Furthermore, the NVIVO tool has been used to analyze, where the necessary themes of the Organizational Compliance Regulations are found. Therefore, we have proposed a conceptual framework to inaugurate a standalone combined framework, which is an innovative and novel measure.
An unprecedented demand for accurate information and action moved the industry toward RegTech where computing, big data, and social and mobile technologies could help achieve the demand. With the introduction and adoption of RegTech, regulatory changes were introduced in some countries. Enhanced regulatory changes to ease the barriers to market entry, data protection, and payment systems were also introduced to ensure a smooth transition into RegTech. However, regulatory changes fell short of comprehensiveness to address all the issues related to RegTech’s operation. This article is an attempt to devise a Privacy Model for RegTech so industries and regulators can protect the interests of various stakeholders. This model comprises four variables, and each variable consists of many items. The four variables are data protection, accountability, transparency, and organizational design. It is expected that the adoption of this Privacy Model will help industries and regulators embrace standards while being innovative in the development and use of RegTech.
The idea of emotions that is concealed in human language gives rise to metaphor. It is challenging to compute and develop a framework for emotions in people because of its detachment and diversity. Nonetheless, machine translation heavily relies on the modeling and computation of emotions. When emotion metaphors are calculated into machine translation, the language is significantly more colorful and satisfies translating criteria such as truthfulness, creativity and beauty. Emotional metaphor computation often uses artificial intelligence (AI) and the detection of patterns and it needs massive, superior samples in the emotion metaphor collection. To facilitate data-driven emotion metaphor processing through machine translation, the study constructs a bi-lingual database in both Chinese and English that contains extensive emotion metaphors. The fundamental steps involved in generating the emotion metaphor collection are demonstrated, comprising the basis of theory, design concepts, acquiring data, annotating information and index management. This study examines how well the emotion metaphor corpus functions in machine translation by proposing and testing a novel earthworm swarm-tunsed recurrent network (ES-RN) architecture in a Python tool. Additionally, the comparison study is carried out using machine translation datasets that already exist. The findings of this study demonstrated that emotion metaphors might be expressed in machine translation using the emotion metaphor database developed in this research.
Copyright © by EnPress Publisher. All rights reserved.