Vascular access in hemodialysis is one of the pillars of success of the program. Therefore, efforts should be directed firstly to achieve the greatest number of vascular accesses of the arteriovenous fistula type, and secondly to reduce complications related to access cannulation in order to functionally preserve the access. Several strategies have been described to improve this last aspect; this article describes the use of ultrasound to improve the probability of successful cannulation in cases considered difficult by the nursing team.
In this paper, an improved mathematical model for flashover behavior of polluted insulators is proposed based on experimental tests. In order to determine the flashover model of polluted insulators, the relationship between conductivity and salinity of solution pollution layer of the insulator is measured. Then, the leakage of current amplitude of four common insulators versus axial, thermal conductivity and arc constants temperature was determined. The experimental tests show that top leakage distance (TLd) to bottom leakage distance (BLd) ratio of insulators has a significant effect on critical voltage and current. Therefore, critical voltage and current were modeled by TLd to BLd ratio Index (M). Also, salinity of solution pollution layer of the insulators has been applied to this model by resistance pollution parameter. On the other hand, arc constants of each insulator in new model have been identified based on experimental results. Finally, a mathematical model is intended for critical voltage against salinity of solution pollution layer of different insulators. This model depends on insulator profile. There is a good agreement between the experimental tests of pollution insulators obtained in the laboratory and values calculated from the mathematical models developed in the present study.
One functional class is described in terms of one-sided modulus of continuity and the modulus of positive (negative) variation on which there
is a uniform convergence of the truncated cardinal Whittaker functions.
The scarcity of the insulators that are required for refrigeration has made it necessary to use locally available materials that can achieve the desired refrigeration. This work presents the performance evaluation of a refrigerator utilizing a locally available material, which is wood particles that have been converted to particle board, as one of its insulators. A vapor compression refrigeration system was designed and fabricated to chill and preserve agricultural products, which are eggs, yogurt, and tomatoes. The various temperatures at which the agricultural products became chilled were compared with their theoretical preservation temperatures obtainable in literature, thereby evaluating the performance of the refrigerator. The temperature of 11 ℃, which was recorded for the egg in the present experiment, is lower than the theoretical preservation temperatures of 18 ℃ to 21 ℃ for an egg. The temperature of 7 ℃, which was recorded for the yogurt, is approximately equal to its theoretical preservation temperature of 5 ℃. The temperature of 8 ℃, which was recorded for the tomato, is lower than the theoretical preservation temperatures of 7 ℃ to 10 ℃ of tomato. This work has revealed that wood particles have the potential to achieve refrigeration, as well as chill and preserve agricultural products.
In today’s manufacturing sector, high-quality materials that satisfy customers’ needs at a reduced cost are drawing attention in the global market. Also, as new applications are emerging, high-performance biocomposite products that complement them are required. The production of such high-performance materials requires suitable optimization techniques in the formulation/process design, not simply mixing natural fibre/filler, additives, and plastics, and characterization of the resulting biocomposites. However, a comprehensive review of the optimization strategies in biocomposite production intended for infrastructural applications is lacking. This study, therefore, presents a detailed discussion of the various optimization approaches, their strengths, and weaknesses in the formulation/process parameters of biocomposite manufacturing. The report explores the recent progress in optimization techniques in biocomposite material production to provide baseline information to researchers and industrialists in this field. Therefore, this review consolidates prior studies to explore new areas.
In order to promote the application of noise map in high-speed railway noise management, the high-speed railway noise map drawing technology based on the combination of noise prediction model and geographic information system (GIS) is studied. Firstly, according to the distribution characteristics of noise sources and line structure characteristics of high-speed railway, the prediction model of multi equivalent sound sources and the calculation method of sound barrier insertion loss of high-speed railway are optimized; secondly, a three-dimensional geographic information model of a high-speed railway is built in GIS software, and the railway noise prediction technology based on the model is developed again; then, the noise of discrete nodes is calculated, and the continuous noise distribution map is drawn by spatial interpolation. The research results show that the comparison error between the noise map of a high-speed railway drawn by this technology and the measured results is less than 1 dB (A), which verifies the accuracy and practicality of the high-speed railway noise map, and can be used as a reference for the railway noise management department to formulate noise control countermeasures.
Copyright © by EnPress Publisher. All rights reserved.