In recent years, nanoporous alloys have presented the advantages of a large specific surface area, low density, and simple operation, and they have been widely used in the fields of catalysis, magnetism, and medicine. Nanoporous Pt-Si alloy was prepared by melt-spun and chemical dealloying, and was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, and transmission electron microscopy. Pt-Si alloys possess a three-dimensional bicontinuous structure and an average size of 5 nanometers. Compared with commercial Pt/C catalysts, nanoporous Pt-Si alloys exhibit excellent electrocatalytic activity and stability in ethanol-catalyzed oxidation reactions. It is taken into consideration to be a promising catalyst in direct ethanol fuel cells.
This paper concerns a miniature gasifier fed with a constant ambient-pressure flow of air to study the pyrolysis and subsequent combustion stage of a single wood pellet at T = 800 ℃. The alkali release and the concentration of simple gases were recorded simultaneously using an improved alkali surface ionisation detector and a mass spectrometer in time steps of 1 s and 1.2 s, respectively. It showed alkali release during both stages. During combustion, the MS data showed almost complete oxidation of the charred pellet to CO2. The derived alkali release, “O2 consumed”, and “CO2 produced” conversion rates all indicated very similar temporal growth and coalescence features with respect to the varying char pore surface area underlying the original random pore model of Bhatia and Perlmutter. But, also large, rapid signal accelerations near the end and marked peak-tails with O2 and CO2 after that, but not with the alkali release data. The latter features appear indicative of alkali–deprived char attributable to the preceding pyrolysis with flowing air. Except for the peak-tails, all other features were reproduced well with the modified model equations of Struis et al. and the parameter values resembled closely those reported for fir charcoal gasified with CO2 at T = 800 ℃.
Introduction: It is universally accepted that the posteroanterior skull radiograph shows a lower degree of distortion than other radiographic images, so that measurements on it are considered reliable. Objective: To determine the percentage of distortion in the different facial regions of the postero-anterior skull radiograph. Methods: Thirty human skulls with their jaws were divided by three horizontal and four vertical planes into fifteen quadrants; there were ten in the skull and five in the jaw. On each of them a steel wire was placed in vertical and horizontal positions and their length (actual measurement) was measured. Each set was X-rayed in posteroanterior projection and the length of the wires was measured in the image (radiographic measurement). Results: It was not possible to measure in the lateral quadrants of the skull. The horizontal measurement in the right and left lower intermediate quadrants of the skull and in the intermediate and lateral quadrants of both sides of the mandible is not reliable; in the median quadrant of the mandible it is minimized; in the right and left upper intermediate and median quadrants of the skull and in the median of the mandible it is magnified. Vertical measurements in all quadrants are reliable; in the right and left upper intermediate and left upper and middle quadrants of the skull and in the right and left middle and lateral quadrants of the mandible it is magnified; in the lower intermediate and upper and lower middle quadrants of the skull and median of the mandible it is minimized. The least distortion for both measurements occurs in the upper median quadrant of the skull. Percentages of distortion are reported for each quadrant. Conclusions: Distortion is present in the posteroanterior skull radiograph and varies from one region of the face to another.
To address the problem that the imaging inversion method based on a single model in integrated aperture imaging is difficult to effectively correct model errors and perform accurate image reconstruction, a dual-model (DM)-based integrated aperture imaging inversion method is proposed for correcting the parametric errors of the inversion model and performing highly accurate millimeter-wave image reconstruction of the target scene. In view of the different parameter sensitivities of the Fourier transform (MFFT) model and the G-matrix (GM) model, the proposed DM method first corrects the imaging parameters with errors accurately by comparing the reconstruction errors of the two models; then recon-structs a high-precision target image based on the accurate GM model with the help of an improved regularization method. It is proved by simulation experiments that the proposed DM method can effectively correct the parameter errors of the imaging model and reconstruct the target scene with high accuracy in millimeter wave images compared with the traditional single-model imaging method.
Regarding to the influence of chloride and fluoride ions on the corrosion resistance, the electrochemical behavior of Ti alloys has been deeply studied. In this work, the main goal was to investigate the electrochemical behavior of cp-Ti and Ti-Mo alloys containing 6, 10 and 15 wt% of Mo concentrations. All the samples were immersed in different solutions, such as 0.15 mol L-1 Na2SO4, 0.15 mol L-1 Ringer, 0.15 mol L-1 Ringer plus 0.036 mol L-1 NaF and 0.036 mol L-1 NaF. Simulating the commercial fluorinated gels, the NaF solutions naturally-aerated were prepared with 1450 ppm of fluoride ions. The electrochemical techniques applied in this work were the open-circuit potential, cyclic voltammetry, besides the technique for chemical identification, which was X-ray photoelectron spectroscopy. The formation and growth of TiO2 and MoO2 were identified, without pitting corrosion. The electrochemical stability and the corrosion resistance of the Ti-Mo alloys decreased in the solutions containing chloride and fluoride ions, with an appreciative decrease especially in the fluorinated medium. The Ti-Mo alloy with higher Mo content concentration was the material with higher corrosion resistance. Therefore, it is a promising candidate as a biomaterial, once the osseointegration needs a satisfactory corrosion resistance for being achieved.
Control of key technological and benchmark flows of polymer fluids poses a number of challenges. Some of them are nowadays under active investigation and rather far from complete understanding. This review considers such phenomena as both practically important and governed by fundamental laws of rheology and non-linear fluid mechanics. We observe, shear bands in polymeric and other complex structured fluids (like wormlike micellar solutions or soft glassy materials), birefrigerent strands, peculiarities of stress and pressure losses in fluids moving through complex shape domains. These and other processes involve inhomogeneity, instabilities and transient modes creeping in flow fields. In practical aspect this is of interest in such industrial process as polymer flooding for Enhanced Oil Recovery (EOR), where a flow inhomogeneity affects a polymer solution injectivity and residual oil saturation. The value of viscoelasticity in the polymer flooding is estimated. The observation is concluded by some new results on relation between polymer concentration in solutions and viscoelastic traits of benchmark flows.
Copyright © by EnPress Publisher. All rights reserved.