Using time series data covering the years 1980 to 2020, this study examines the effects of government spending, population growth, and economic expansion on unemployment in the context of South Africa. The study’s variables include government spending, population growth, and economic growth as independent factors, and unemployment as the dependent variable. To ascertain the study’s outcomes, basic descriptive statistics, the Vector Error Correction Model (VECM), the Johansen Cointegration Procedures, the Augmented Dicky-Fuller Test (ADF), and diagnostic tests were used. Since all the variables are stationary at the first difference, the ADF results show that there isn’t a unit root issue. According to the Johansen cointegration estimation, there is a long-term relationship amongst the variables. Hence the choice of VECM to estimate the outcomes. Our results suggests that a rise in government spending will result in a rise in South Africa’s unemployment rate. The findings also suggest that there is a negative correlation between unemployment and population growth. This implies that as the overall population grows, unemployment will decline. Additionally, the findings suggest that unemployment and economic growth in South Africa are positively correlated. This contradicts a number of economic theories, including Keynesian and Okuns Law, which hold that unemployment and economic growth are inversely correlated.
This study aims to advance understanding of the factors affecting Generation Z employee commitment in the workplace of the information and technology (IT) companies in Vietnam. A survey of 450 Generation Z employees in IT companies shows that company remuneration, reward and welfare, work environment, colleagues, direct manager, promotion, job characteristics, green initiatives are positively related to Generation Z organizational commitment. More specifically, work environment and direct manager have the highest effect on Generation Z employee commitment to organization while promotion and colleagues have the lowest effect on Generation Z employee commitment to organization. Research results also revealed that green initiatives of the organization have significant effect on Generation Z employee commitment in companies. This finding suggests that including green initiatives in corporate strategy is a valuable approach for improving Generation Z employee commitment to organization. We discuss the implications for theory, practice, limitations, and directions for future research.
A precise risk assessment in a production line constitutes a significant item to identify susceptible areas where there is a possibility of product quality degradation. This also applies to the precast concrete production line in Indonesia that has a spun pile product. Based on a risk assessment activity conducted in this study, it is proposed to build a traceability model in order to maintain and even improve the spun pile product quality in Indonesia. The approach used was the Neural Network of the perceptron model for weighing and will result in a defined traceability path in the context of reducing defects and even failed spun pile products. The simulation result showed that the model has been able to detect risky path possibilities to reduce product quality. The accumulation result of high-risk and medium-risk paths in this study showed that closer to product finalization, the risk will be higher. It is evident that when assessing Indicators, the order from the highest accumulation value first is Curing & Demolding and Stressing & Spinning at 29% each, Casting at 14%, Forming & Setting at 14%, and lastly Cutting & Heading at 14%. Regarding the risk assessment for activities, the first position is Curing & Demolding and Stressing & Spinning with 30% each, the second is Casting and Forming & Setting with 15% each, and the third is Cutting & Heading with 10%.
The menace of road traffic accidents (RTAs) has become a major constraint to development in most developing countries because of driving behaviour. This study examines the effects of road users’ education programmes on driving behaviour toward RTA reduction in Nigeria. Data for the study were collected by random sampling of 287 respondents. The respondents comprising road safety officers and drivers were selected at six (6) zonal headquarters of the Federal Road Safety Commission. The questionnaire presented seventeen (17) statements in a 5-point Likert scale for the respondents to rank in order of importance as they have influenced driving behaviour. The data collected were analysed using exploratory factor analysis to identify the most significant effects of road user education on driving behaviour. The study found that road user education programmes have influenced driving behaviour by improving bad driving acts, maintaining good vehicle conditions, and obeying road communication signs. The finding implies that appropriate driving behaviour will reduce road traffic accidents.
Background: Various studies have demonstrated the usefulness of Google search data for public health-monitoring systems. The aim of this study is to be estimated interest of public in infectious diseases in infectious diseases in South Korea, the five other countries. Methods: We conducted cross-country comparisons for queries related to the H1N1 virus and Middle East respiratory syndrome coronavirus (MERS-CoV). We analyzed queries related to the novel coronavirus disease (COVID-19) from 20 January to 13 April 2020, and performed time-descriptive and correlation analyses on trend patterns. Results: Trends in H1N1, MERS-CoV, and COVID-19 queries in South Korea matched those in the five other countries and worldwide. The relative search volume (RSV) for the MERS-CoV virus increased as the cumulative number of confirmed cases in South Korea increased and decreased significantly as the number of confirmed cases decreased. The volume of COVID-19 queries dramatically increased as South Korea’s confirmed COVID-19 cases grew significantly at the community level. However, RSV remained stable over time. Conclusions: Google Trends provides real-time data based on search patterns related to infectious diseases, allowing for continuous monitoring of public reactions, disease spread, and changes in perceptions or concerns. We can use this information to adjust their strategies of the prevention of epidemics or provide timely updates to the public.
Background: Kangyang tourism, a wellness tourism niche in China, integrates health preservation with tourism through natural and cultural resources. Despite a growing interest in Kangyang tourism, the factors driving tourist loyalty in this sector are underexplored. Methods: Using a sample of 413 tourists, this study employed Covariance-Based Structural Equation Modeling (CB-SEM) to examine the influence of destination image, service quality, tourist satisfaction, and affective commitment on tourist loyalty. Results: The findings reveal that destination image and service quality positively affect tourist satisfaction, affective commitment, and loyalty. Tourist satisfaction and affective commitment are identified as critical drivers of tourist loyalty. Notably, affective commitment plays a stronger role in fostering loyalty compared to satisfaction. Conclusion: These results highlight the importance of a positive destination image and high service quality in enhancing tourist loyalty through increased emotional and psychological attachment. The findings inform strategies for stakeholders to improve Kangyang tourism’s growth by focusing on emotionally engaging experiences and service excellence.
Copyright © by EnPress Publisher. All rights reserved.