This study explores the integration of data mining, customer relationship management (CRM), and strategic management to enhance the understanding of customer behavior and drive revenue growth. The main goal is the use of application of data mining techniques in customer analytics, focusing on the Extended RFM (Recency, Frequency, Monetary Value and count day) model within the context of online retailing. The Extended RFM model enhances traditional RFM analysis by incorporating customer demographics and psychographics to segment customers more effectively based on their purchasing patterns. The study further investigates the integration of the BCG (Boston Consulting Group) matrix with the Extended RFM model to provide a strategic view of customer purchase behavior in product portfolio management. By analyzing online retail customer data, this research identifies distinct customer segments and their preferences, which can inform targeted marketing strategies and personalized customer experiences. The integration of the BCG matrix allows for a nuanced understanding of which segments are inclined to purchase from different categories such as “stars” or “cash cows,” enabling businesses to align marketing efforts with customer tendencies. The findings suggest that leveraging the Extended RFM model in conjunction with the BCG matrix can lead to increased customer satisfaction, loyalty, and informed decision-making for product development and resource allocation, thereby driving growth in the competitive online retail sector. The findings are expected to contribute to the field of Infrastructure Finance by providing actionable insights for firms to refine their strategic policies in CRM.
Using a qualitative research methodology and exploratory approach to collect data, this study assessed the effects of dependency syndrome within Africa’s international relations and its repercussions for achieving sustainable development. The collected data were analysed using document and content analysis techniques. The study revealed that dependency syndrome within Africa’s international relations has led to aid dependency, political violence, and poverty. It has promoted laziness and an inferiority complex that affects the working conditions of Africans. Further, it has promoted corruption and affected the rule of law for good governance; yet, sustainable development cannot occur without it. Moreover, dependency syndrome has inhibited innovation and led to the destruction of the local industries that are key to achieving sustainable development. The results of the study found that dependency syndrome has prevented the development of a robust transport network system that could promote African trade relations, which would lead to sustainable development. The results also posited that chronic poverty and underdevelopment in Africa are perpetuated by the dependency syndrome within Africa’s international relations. The study recommended that Africa needs to overcome dependency syndrome and reform her international relations with external world. This would require establishing a continental sovereignty that enables the continent to have one common foreign policy within its planning diplomacy endeavours.
Based on digital technology, the digital economy has typical characteristics of high efficiency, greenness, intelligence, innovation, strong penetration and so on, which can promote the sporting goods manufacturing industry (SGMI) to realize the goal of green development. This study selects panel data from 30 provinces in China over the period of 2011 to 2022. And the green total factor productivity of the sporting goods manufacturing industry (SGTFP) is used to reflect the green development of SGMI. The level of digital economy development (DIG) and the SGTFP are measured by using the entropy method and the Super-SBM model with undesirable outputs. Based on the method of coupling coordination degree model, the coordinated development degree of DIG and SGTFP is analyzed first. Then, by making use of the fixed effect model, intermediary effect model and spatial Durbin model, the influence of DIG on the green development of SGMI and its mechanism are empirically studied. The results show that DIG, SGTFP and the degree of their coupling and coordination are generally on the rise. The benchmark regression results show that the coefficient of DIG on SGTFP is 0.213; that is, the digital economy can significantly promote the improvement of green development in SGMI. According to the analysis of the spatial Durbin model, the impact of the digital economy on SGTFP has a certain spatial spillover, that is, the development of digital economy in the region will have a certain promoting effect on the green development of SGMI in the surrounding region. The intermediary effect model analyzes the influence mechanism and finds that the digital economy mainly boosts SGTFP through green innovation technology and energy consumption structure.
Management and efficiency have a fundamental impact on the performance of public hospitals, as well as on their philanthropic mission. Various studies have shown that the financial weaknesses of these entities affect the planning, setting of goals and objectives, monitoring, evaluation and feedback necessary to improve health systems and guarantee accessibility as an inalienable right. This study aims to analyze the management and efficiency of third-level and/or high-complexity hospitals in Colombia, through a statistical model that uses financial analysis and key performance indicators (KPIs) such as ROA, ROE and EBITDA. A non-experimental cross-sectional design is used, with an analytical-synthetic, documentary, exploratory and descriptive approach. The results show financial deficiencies in the hospitals evaluated; hence it is recommended to make adjustments in the operating cycle to increase efficiency rates. In addition, the use of the KPIs ROA and ROE under adjusted models is suggested for a more precise analysis of the financial ratios, since these adequately explain the variability of each indicator and are appropriate to evaluate hospital management and efficiency, but not in EBITDA ratio, hence the latter is not recommended to evaluate hospital efficiency reliably. This study provides relevant information for public health policy makers, hospital managers and researchers, in order to promote the efficiency and improvement of health services.
In order to assess the effects of e-learning integration on university performance and competitiveness, this study uses Oman as a model for the Gulf. Analyzing how e-learning impacts technology integration, diversity, community engagement, infrastructure, financial strength, institutional reputation, student outcomes, research and innovation, and academic quality can reveal whether universities are effectively incorporating digital tools to enhance teaching and learning. By offering a framework for comparable institutions in the Gulf area, this study provides insights into optimizing e-learning techniques to improve university performance and competitiveness. This study uses the Structural Equation Modeling (SEM) with a dataset comprising 424 participants and 55 indicators, analyzed using both measurement and structural models. The results of the hypothesis testing, which indicate that e-learning has a positive effect on factors like student outcomes (B = 0.080, t = 2.859, P = 0.004) and institutional reputation (B = 0.058, t = 2.770, P = 0.005), lend credence to these beliefs. Omani universities need culturally sensitive e-learning, stronger institutional support, and training to enhance diversity (B = 0.002, t = 0.456, P = 0.647) and technology integration (B = −0.009, t = 0.864, P = 0.387). These improvements increase the visibility of Gulf institutions abroad, attracting the best students from all around the world and fostering an inclusive learning atmosphere. Financially speaking, e-learning offers reasonably priced solutions such as digital libraries and virtual laboratories, which are especially beneficial in a region where education plays a major role in socioeconomic development.
This study explores the determinants of control loss in eating behaviors, employing decision tree regression analysis on a sample of 558 participants. Guided by Self-Determination Theory, the findings highlight amotivation (β = 0.48, p < 0.001) and external regulation (β = 0.36, p < 0.01) as primary predictors of control loss, with introjected regulation also playing a significant role (β = 0.24, p < 0.05). Consistent with Self-Determination Theory, the results emphasize the critical role of autonomous motivation and its deficits in shaping self-regulation. Physical characteristics, such as age and weight, exhibited limited predictive power (β = 0.12, p = 0.08). The decision tree model demonstrated reliability in explaining eating behavior patterns, achieving an R2 value of 0.39, with a standard deviation of 0.11. These results underline the importance of addressing motivational deficits in designing interventions aimed at improving self-regulation and promoting healthier eating behaviors.
Copyright © by EnPress Publisher. All rights reserved.