Personality traits refer to enduring patterns of emotions, behaviors, and thoughts that shape an individual’s distinct character, influencing how they perceive and engage with their environment. This quantitative study aims to underscore the influence of personal factors and the role of educational institutions in mapping sustainable green entrepreneurial intentions among university students in Saudia Arabia. To examine the impact of personality traits and entrepreneurship education on students’ green initiatives, the research employs a quantitative research method, collecting data through a structured questionnaire survey from 494 participants who enrolled in the entrepreneurship education at King Faisal University. Structural equation modeling via SmartPLS 3 is employed for data analysis. The study reveals significant associations between the need for achievement, proactiveness, risk-aversion, self-efficacy, and entrepreneurship education with green entrepreneurial intentions. Our research findings demonstrate that the inclusion of entrepreneurship education in the curriculum has a noteworthy and favorable influence on the intention to engage in green entrepreneurship (β = −0.105, t = 3.270, p < 0.001). Additionally, it is worth noting that the desire for achievement remains significantly associated with the intention to engage in green entrepreneurship (β = 0.120, t = 3.588, p < 0.000). Furthermore, the proactive behavior of individuals has a positive and constructive impact on the intention to engage in green entrepreneurship (β = 0.207, t = 4.272, p < 0.000). Similarly, the inclination to avoid risk is found to have a beneficial and significant influence on the intention to engage in green entrepreneurship (β = 0.336, t = 4.594, p < 0.000). Lastly, it is worth highlighting that individuals’ belief in their own abilities, referred to as self-efficacy, is positively and significantly linked to the intention to engage in green entrepreneurship (β = 0.182, t = 2.610, p < 0.009). The research carries social, economic, and academic implications by emphasizing the positive contribution of green entrepreneurs to the future. Practical recommendations for policymakers and decision-makers are provided.
Government performance means the results of government work. Its use is to evaluate government accountability, decision-making, efficiency, effectiveness, transparency, and achievement of goals. Purpose: This paper aims to explore the understanding of performance measurement tools commonly used in government, the reasons for using them, and the implementation of performance measurement in Indonesia. Method: This study uses a meta-synthesis method, an integrative review approach from 2000–2021, in the Scopus database using the keywords measurement system, performance measurement, performance measurement government, measurement system government. Results and Discussion: The final sample consisted of 23 studies, and the results showed that the most commonly used performance measurement was the balanced scorecard. This is because the balanced scorecard is able to explain the vision, mission, strategy, results, and operational actions, so that it can achieve local government goals. Research implications: Insight into government performance measurement can be used to determine the strengths and weaknesses of various performance measurement tools so that the government can implement performance measurement tools that are more appropriate for its government. Originality/Value: This study offers an adaptation of existing methods to measure government performance more effectively. In addition, this study focuses on the context of developing countries, which can provide new contributions to the literature.
This study explores the intricate relationship between emotional cues present in food delivery app reviews, normative ratings, and reader engagement. Utilizing lexicon-based unsupervised machine learning, our aim is to identify eight distinct emotional states within user reviews sourced from the Google Play Store. Our primary goal is to understand how reviewer star ratings impact reader engagement, particularly through thumbs-up reactions. By analyzing the influence of emotional expressions in user-generated content on review scores and subsequent reader engagement, we seek to provide insights into their complex interplay. Our methodology employs advanced machine learning techniques to uncover subtle emotional nuances within user-generated content, offering novel insights into their relationship. The findings reveal an inverse correlation between review length and positive sentiment, emphasizing the importance of concise feedback. Additionally, the study highlights the differential impact of emotional tones on review scores and reader engagement metrics. Surprisingly, user-assigned ratings negatively affect reader engagement, suggesting potential disparities between perceived quality and reader preferences. In summary, this study pioneers the use of advanced machine learning techniques to unravel the complex relationship between emotional cues in customer evaluations, normative ratings, and subsequent reader engagement within the food delivery app context.
The COVID-19 pandemic has fundamentally transformed the global education landscape, compelling institutions to adopt e-learning as an essential tool to sustain academic activities. This research examines the critical impact of e-learning on arts and science college students in Coimbatore, with an emphasis on its influence on their readiness for campus recruitment. Using a survey of 300 students, this study investigates their perceptions of online education, highlighting both its advantages, such as flexibility and accessibility, and its challenges, including engagement barriers and technical limitations. Data was collected through structured questionnaires and analyzed using statistical methods to draw meaningful insights. The research also explores the efficacy of online assessments in recruitment processes and assesses students’ awareness of available e-learning platforms and courses. The urgency of this study lies in addressing the pressing need to optimize digital education models as institutions globally transition toward blended learning post-pandemic. The findings underline the dual potential and limitations of e-learning, concluding with actionable recommendations to enhance its effectiveness, particularly in preparing students for competitive employment opportunities.
The purpose of this study is to investigate different factors associated with remote online home-based learning (thereafter named OHL), including technical system quality, perceived quality of contents, perceived ease of use, and perceived usefulness in relation to the satisfaction of undergraduate students following the post-COVID-19 pandemic in Malaysia. Additionally, the mediating roles of attitude are also investigated. Two hundred questionnaires were distributed using judgmental sampling method and 156 completed responses were collected. The data were subsequently analyzed using PLS-SEM. The findings imply that the OHL system is an effective method although it is challenging to operate. In terms of perceived technical system quality, OHL is currently more gratifying for students; however, some have reported that the quality of the content delivered via the remote system is still unsatisfactory. Moreover, the study found that attitude is a significant determinant of undergraduates’ satisfaction with OHL. This study contributes to the advancement of current knowledge by inspecting the factors of the Undergraduate Level OHL System using the mediating roles of attitude. In terms of underpinning theories, Technology Acceptance Model and Information System Model were employed as the guiding principles of the current study.
Managing the spread of “disinformation” is becoming an increasingly difficult task of our time, with an emphasis on digital marketing and its influence on organizational reputation. This paper aims to analyze the phenomenon of disinformation, with emphasis on the role of digital marketing and the consequent effect on organizational image. Thus, using the systematic literature review methodology, the study defines and categorizes different types of disinformation, namely fake news, misinformation, and propaganda, and how they are spread across different channels. Using the research, it is possible to conclude that digital marketing is more effective in spreading disinformation than traditional media and word-of-mouth; social media management and content marketing are the most effective. The work also evaluates the catastrophic impact of disinformation on an organization’s image, fiscal health, and the trust of its stakeholders. Using the Chi-Square Test for Independence and Logistic Regression, the study determines the factors likely to lead to severe consequences of disinformation campaigns. Last but not least, the paper also suggests ways of preventing the spread of disinformation, which include improved education on the use of digital platforms, better fact-checking systems, and an improved code of ethics in digital marketing.
Copyright © by EnPress Publisher. All rights reserved.