Electric cars are manufactured to address environmental problems, reduce dependence on fossil fuels, and nullify climate change. Their production aligns with sustainability objectives by encouraging cleaner transportation options, promoting energy efficiency, and contributing to a transition towards eco-friendly mobility in an answer to global environmental challenges. In Jordan, similar to any international market, car dealers and traders import electric cars. However, the prevailing perceptions and attitudes of Jordanian consumers need strong consideration. Nevertheless, there is still uncertainty and a need for more trust in electric vehicles among Jordanian consumers. Therefore, this research aims to ascertain whether electric cars have a lasting positive perception among Jordanians through an inductive research approach. Employing thematic qualitative analysis, this research is supported by the diffusion of innovation theory. Notably, the research findings provided robust insights, further leading to reinforcing the idea about the pervasive attitudes of Jordanian consumers. Thus, this research concludes that there still needs to be more confidence regarding electric vehicles among most consumers in Jordan. Furthermore, this research offers practical and theoretical contributions to Jordan’s policymakers and electric vehicle companies.
The study investigates the impact of artificial intelligence (AI)-powered chatbots on brand dynamics within the banking sector, focusing on the interrelationships between AI implementation and key brand dimensions, including awareness, equity, image, and loyalty. Using structural equation modeling (SEM) analysis on data collected from 520 banking customers, the study tests eight hypotheses to explore the direct and indirect effects of AI-driven interactions on brand development. The findings reveal that AI chatbots significantly enhance brand awareness in banking services, demonstrating moderate positive effects on both brand equity and brand image. Notably, while brand awareness exerts a strong influence on brand image, it does not have a significant direct effect on brand loyalty. Instead, the study shows that brand loyalty is primarily developed through the mediating effects of brand equity and image, with brand image exerting a particularly strong influence on brand equity. For banking practitioners, these insights suggest a need to integrate AI chatbots within a comprehensive brand strategy that merges technological innovation with traditional relationship-building approaches. Limitations of the study and potential directions for future research are also discussed, providing avenues for further exploration of AI’s role in brand management.
This study explores the impact of Project-Based Learning (PBL) and locally sourced reading materials on improving speaking proficiency in English as a Foreign Language (EFL) learners. The participants consist of college students aged 18 to 19 years. Forty-four participants from two groups—experimental and control—were evaluated using pre-and post-tests. The experimental group engaged with local cultural reading materials and followed a PBL framework, while the control group used standard commercial textbooks from Western publishers. The findings reveal that the experimental group demonstrated significantly improved fluency, vocabulary, and speaking confidence compared to the control group, with 37.04% showing improvement. PBL facilitated collaborative learning in real-life scenarios, reducing anxiety and fostering more significant participation in speaking tasks. In contrast, the control group showed minimal improvement, highlighting the limitations of traditional lecture-based methods. This study concludes that integrating PBL and locally relevant content into language instruction can enhance speaking proficiency, learner motivation, and engagement. The results suggest that PBL is a dynamic approach that supports developing linguistic and collaborative skills, providing a more holistic learning experience.
Purpose: The purpose of this paper is to explore the impact of Artificial Intelligence on the performance of Indian Banks in terms of financial metrics. The study focused specifically on the NIFTY Bank Index. The paper also advocates that a greater transparency in disclosing AI related information in a Bank’s annual report is required even if it is voluntary. Design/Methodology/Approach: The paper uses a mixed method approach where quantitative and qualitative analysis is combined. A dynamic panel data model is used to understand the impact of AI of Return on Equity (RoE) of 12 Indian Banks in the NIFTY Bank Index over a five-year period. In addition to that, Content analysis of annual reports of banks was conducted to examine AI related disclosure and transparency. Findings: The paper highlights that the integration of Artificial Intelligence (AI) significantly influences the financial performance of sample banks of India. Return on Equity the specific parameter positively influenced with adoption of AI. The profitability of banks is positively impacted by reduced errors and improved operational efficiency. The content analysis of annual reports of the banks indicates different approach for AI disclosure where some banks give detailed information and some are not transparent about AI initiatives. The findings suggest that a higher level of transparency could enhance confidence of all stakeholders. Theoretical Implications: The positive relation between adoption of AI and financial performance, specifically ROE, gives a foundation for academic research to explore the dynamics of emerging technology and financial systems. The study can be extended to explore the impact on other performance indicators in different sectors. Practical Implications: The findings of this study emphasize the importance of transparent AI related disclosures. A detailed reporting about integration of AI helps in enhanced stakeholders’ confidence in case of banking industry. The regulatory framework of banks may also consider making mandatory AI disclosure practices to ensure due accountability to maximize the benefits of AI in banking.
This paper investigates the implementation of ijarah muntahiyah bittamlik (IMBT) as an infrastructure project financing scheme within the Public-Private Partnership (PPP) models from a collaborative governance perspective. This paper follows a case study methodology. It focuses on two Indonesian non-toll road infrastructure projects, i.e., the preservation of the East Sumatra Highway projects, each in South Sumatra province and Riau province. The findings revealed that Indonesia’s infrastructure development priorities and its vision to become a global leader in Islamic finance characterized the system context that shaped the implementation of IMBT as an infrastructure project financing scheme within the PPP-AP model. Key drivers include leadership from the government, stakeholder interdependence, and financial incentives for the partnering business entity to adopt off-balance sheet solutions. Principled engagement, shared motivation, and the capacity for joint action characterized the collaboration dynamics, leading to detailed collaborative actions crucial for implementing IMBT as a financing scheme.
In the wake of the COVID-19 pandemic, the prevalence of online education in primary education has exhibited an upward trajectory. Relative to traditional learning environments, online instruction has evolved into a pivotal pedagogical modality for contemporary students. Thus, to comprehensively comprehend the repercussions of environmental changes on students’ psychological well-being in the backdrop of prolonged online education, this study employs an innovative methodology. Founded upon three elemental feature sequences—images, acoustics, and text extracted from online learning data—the model ingeniously amalgamates these facets. The fusion methodology aims to synergistically harness information from diverse perceptual channels to capture the students’ psychological states more comprehensively and accurately. To discern emotional features, the model leverages support vector machines (SVM), exhibiting commendable proficiency in handling emotional information. Moreover, to enhance the efficacy of psychological well-being prediction, this study incorporates an attention mechanism into the traditional Convolutional Neural Network (CNN) architecture. By innovatively introducing this attention mechanism in CNN, the study observes a significant improvement in accuracy in identifying six psychological features, demonstrating the effectiveness of attention mechanisms in deep learning models. Finally, beyond model performance validation, this study delves into a profound analysis of the impact of environmental changes on students’ psychological well-being. This analysis furnishes valuable insights for formulating pertinent instructional strategies in the protracted context of online education, aiding educational institutions in better addressing the challenges posed to students’ psychological well-being in novel learning environments.
Copyright © by EnPress Publisher. All rights reserved.