The current manuscript overviews the potential of inimitable zero dimensional carbon nanoentities, i.e., nanodiamonds, in the form of hybrid nanostructures with allied nanocarbons such as graphene and carbon nanotube. Accordingly, two major categories of hybrid nanodiamond nanoadditives have been examined for nanocompositing, including nanodiamond-graphene or nanodiamond/graphene oxide and nanodiamond/carbon nanotubes. These exceptional nanodiamond derived bifunctional nanocarbon nanostructures depicted valuable structural and physical attributes (morphology, electrical, mechanical, thermal, etc.) owing to the combination of intrinsic features of nanodiamonds with other nanocarbons. Consequently, as per literature reported so far, noteworthy multifunctional hybrid nanodiamond-graphene, nanodiamond/graphene oxide, and nanodiamond/carbon nanotube nanoadditives have been argued for characteristics and potential advantages. Particularly, these nanodiamond derived hybrid nanoparticles based nanomaterials seem deployable in the fields of electromagnetic radiation shielding, electronic devices like field effect transistors, energy storing maneuvers namely supercapacitors, and biomedical utilizations for wound healing, tissue engineering, biosensing, etc. Nonetheless, restricted research traced up till now on hybrid nanodiamond-graphene and nanodiamond/carbon nanotube based nanocomposites, therefore, future research appears necessary for further precise design varieties, large scale processing, and advanced technological progresses.
In this paper advanced Sentiment Analysis techniques were applied to evaluate public opinions reported by rail users with respect to four major European railway companies, i.e., Trenitalia and Italo in Italy, SNCF in France and Renfe in Spain. Two powerful language models were used, RoBERTa and BERT, to analyze big amount of text data collected from a social platform dedicated to customers reviews, i.e., TrustPilot. Data concerning the four European railway companies were first collected and classified into subcategories related to different aspects of the railway sector, such as train punctuality, quality of on-board services, safety, etc. Then, the RoBERTa and BERT models were developed to understand context and nuances of natural language. This study provides a useful support for railways companies to promote strategies for improving their service.
Naturally occurring radionuclides can be categorized into two main groups: primordial and cosmogenic, based on their origin. Primordial radionuclides stem from the Earth’s crust, occurring either individually or as part of decay chains. Conversely, cosmogenic radionuclides originate from extraterrestrial sources such as space, the sun, and nuclear reactions involving cosmic radiation and the Earth’s atmosphere. Gamma-ray spectrometry is a widely employed method in Earth sciences for detecting naturally occurring radioactive materials (NORM). Its applications vary from environmental radiation monitoring to mining exploration, with a predominant focus on quantifying the content of uranium (U), thorium (Th), and potassium (K) in rocks and soils. These elements also serve as tracers in non-radioactive processes linked to NORM paragenesis. Furthermore, the heat generated by radioactive decay within rocks plays a pivotal role in deciphering the Earth’s thermal history and interpreting data concerning continental heat flux in geophysical investigations. This paper provides a concise overview of current analytical and measuring techniques, with an emphasis on state-of-the-art mass spectrometric procedures and decay measurements. Earth scientists constantly seek information on the chemical composition of rocks, sediments, minerals, and fluids to comprehend the vast array of geological and geochemical processes. The historical precedence of geochemists in pioneering novel analytical techniques, often preceding their commercial availability, underscores the significance of such advancements. Geochemical analysis has long relied on atomic spectrometric techniques, such as X-ray fluorescence spectrometry (XRFS), renowned for its precision in analyzing solid materials, particularly major and trace elements in geological samples. XRFS proves invaluable in determining the major constituents of silicate and other rock types. This review elucidates the historical development and methodology of these techniques while showcasing their common applications in various geoscience research endeavors. Ultimately, this review aims to furnish readers with a comprehensive understanding of the fundamental concepts and potential applications of XRF, HPGes, and related technologies in geosciences. Lastly, future research directions and challenges confronting these technologies are briefly discussed.
Named Entity Recognition (NER), a core task in Information Extraction (IE) alongside Relation Extraction (RE), identifies and extracts entities like place and person names in various domains. NER has improved business processes in both public and private sectors but remains underutilized in government institutions, especially in developing countries like Indonesia. This study examines which government fields have utilized NER over the past five years, evaluates system performance, identifies common methods, highlights countries with significant adoption, and outlines current challenges. Over 64 international studies from 15 countries were selected using PRISMA 2020 guidelines. The findings are synthesized into a preliminary ontology design for Government NER.
This article analyses the case of Dubai’s smart city from a public policy perspective and demonstrates how critical it is to rely on the use of the public-private partnership (PPP) model. Effective use of this model can guarantee the building of a smart city that could potentially fulfill the vision of the political leadership in Dubai and serve as a catalyst and blueprint for other Gulf states that wish to follow Dubai’s example. This article argues that Dubai’s smart city project enjoys significant political support and has ambitious plans for sustainable growth, and that the government has invested heavily in developing the necessary institutional, legal/regulatory, and supervisory frameworks that are essential foundations for the success of any PPP project. The article also points to some important insights that the Dubai government can learn from the international experience with the delivery of smart cities through PPPs.
Recent technological advances in the fields of biomaterials and tissue engineering have spurred interest in biopolymers for various biomedical applications. The advantage of biopolymers is their favorable characteristics for these applications, among which proteins are of particular importance. Proteins are explored widely for 3D bioprinting and tissue engineering applications, wound healing, drug delivery systems, implants, etc., and the proteins mainly available include collagen, gelatin, albumin, zein, etc. Zein is a plant protein abundantly present in corn endosperm, and it is about 80% of total corn protein. It is a highly renewable source, and zein has been reported to be applicable in different industrial applications. Lately, it has gained attention in biomedical applications. This research interest in zein is on account of its biocompatibility, non-toxicity, and certain unique physico-chemical properties. Zein comes under the GRAS category and is considered safe for biomedical applications. The hydrophobic nature of this protein gives it an added advantage and has wider applications in drug delivery. This review focuses on details about zein protein, its properties, and potential applications in biomedical sectors.
Copyright © by EnPress Publisher. All rights reserved.