Graphene has been ranked among one of the most remarkable nanostructures in the carbon world. Graphene modification and nanocomposite formation have been used to expand the practical potential of graphene nanostructure. The overview is an effort to highlight the indispensable synthesis strategies towards the formation of graphene nanocomposites. Consequently, graphene has been combined with useful matrices (thermoplastic, conducting, or others) to attain the desired end material. Common fabrication approaches like the in-situ method, solution processing, and melt extrusion have been widely involved to form the graphene nanocomposites. Moreover, advanced, sophisticated methods such as three- or four-dimensional printing, electrospinning, and others have been used to synthesize the graphene nanocomposites. The focus of all synthesis strategies has remained on the standardized graphene dispersion, physical properties, and applications. However, continuous future efforts are required to resolve the challenges in synthesis strategies and optimization of the parameters behind each technique. As the graphene nanocomposite design and properties directly depend upon the fabrication techniques used, there is an obvious need for the development of advanced methods having better control over process parameters. Here, the main challenging factors may involve the precise parameter control of the advanced techniques used for graphene nanocomposite manufacturing. Hence, there is not only a need for current and future research to resolve the field challenges related to material fabrication, but also reporting compiled review articles can be useful for interested field researchers towards challenge solving and future developments in graphene manufacturing.
Fire hazard is often mapped as a static conditional probability of fire characteristics’ occurrence. We developed a dynamic product for operational risk management to forecast the probability of occurrence of fire radiative power in the locally possible near-maximum fire intensity range. We applied standard machine learning techniques to remotely sensed data. We used a block maxima approach to sample the most extreme fire radiative power (FRP) MODIS retrievals in free-burning fuels for each fire season between 2001 and 2020 and associated weather, fuel, and topography features in northwestern south America. We used the random forest algorithm for both classification and regression, implementing the backward stepwise repression procedure. We solved the classification problem predicting the probability of occurrence of near-maximum wildfire intensity with 75% recall out-of-sample in ten annual test sets running time series cross validation, and 77% recall and 85% ROC-AUC out-of-sample in a twenty-fold cross-validation to gauge a realistic expectation of model performance in production. We solved the regression problem predicting FRP with 86% r2 in-sample, but out-of-sample performance was unsatisfactory. Our model predicts well fatal and near-fatal incidents reported in Peru and Colombia out-of-sample in mountainous areas and unimodal fire regimes, the signal decays in bimodal fire regimes.
Adequate sanitation is crucial for human health and well-being, yet billions worldwide lack access to basic facilities. This comprehensive review examines the emerging field of intelligent sanitation systems, which leverage Internet of Things (IoT) and advanced Artificial Intelligence (AI) technologies to address global sanitation challenges. The existing intelligent sanitation systems and applications is still in their early stages, marked by inconsistencies and gaps. The paper consolidates fragmented research from both academic and industrial perspectives based on PRISMA protocol, exploring the historical development, current state, and future potential of intelligent sanitation solutions. The assessment of existing intelligent sanitation systems focuses on system detection, health monitoring, and AI enhancement. The paper examines how IoT-enabled data collection and AI-driven analytics can optimize sanitation facility performance, predict system failures, detect health risks, and inform decision-making for sanitation improvements. By synthesizing existing research, identifying knowledge gaps, and discussing opportunities and challenges, this review provides valuable insights for practitioners, academics, engineers, policymakers, and other stakeholders. It offers a foundation for understanding how advanced IoT and AI techniques can enhance the efficiency, sustainability, and safety of the sanitation industry.
This study examines the challenges and needs faced by non-profit organisations (NPOs) in Colombia regarding the adopting of the International Financial Reporting Standards (IFRS) for small and medium enterprises (SMEs), particularly focusing on sections 3 and 4. Employing a mixed-method approach, the research combines qualitative and quantitative methods. Surveys were conducted with Colombia NPOs, official documents were analysed, and comparative case studies were performed. In-depth interviews and participant observation were also utilised to gain a comprehensive understanding of the obstacles and current practices within the Colombian context. The findings reveal that NPOs in Colombia encounter significant difficulties in adopting IFRS due to the complexity of the standards, lack of specialised resources, and the need for specific training. Internal challenges such as deficiencies in staff qualifications and training, resistance to change, and technological limitations were identified. Externally, ambiguities in the legal framework and donor requirements were highlighted. The case study illustrated that, while there are similarities between IFRS for SMEs and the IFR4NPO project, specific adaptations are essential to address the unique needs of NPOs. This research underscores the necessity of developing additional guidelines or modifying existing ones to enhance the interpretation and application of IFRS in Colombia NPOs. It is recommended to implement proactive strategies based on education and legislative reform to improve the transparency and comparability of financial information. Adopting a more tailored and supported accounting framework will facilitate a more relevant and sustainable implementation, benefiting Colombian NPOs in their resource management and accountability efforts.
Investors and company managements often rely on traditional performance evaluation indicators, such as return on equity, return on assets, and other financial ratios, to explain changes in a company’s market value added (MVA). However, the effectiveness of these traditional measures in explaining market value fluctuations remains uncertain. This research aims to investigate the impact of various profitability measures, namely return on equity, gross profit margin, operating profit margin, and return on assets, on explaining changes in the MVA of pharmaceutical and chemical companies listed on the Amman Stock Exchange. To achieve the study’s objectives, we analyzed the published financial statements of a sample consisting of 14 industrial companies out of a total of 53 companies listed on the Amman Stock Exchange during the period from 2008 to 2022. Relevant financial indicators were extracted from these statements to serve the purposes of the study. Correlation coefficients were employed to measure the extent to which the independent variables (profitability measures) could interpret changes in the dependent variable (MVA). One of the most significant findings of the study is that three dimensions of profitability measures have a statistically significant impact on explaining changes in the MVA of pharmaceutical and chemical companies listed on the Amman Stock Exchange, albeit to varying degrees. This suggests that traditional profitability measures still play a crucial role in influencing market perceptions of a company’s value, despite the potential limitations of these measures in capturing the full scope of a company’s performance and potential.
Inflammation of the lungs, called pneumonia, is a disease characterized by inflammation of the air sacs that interfere with the exchange of oxygen and carbon dioxide. It is caused by a variety of infectious organisms, including viruses, bacteria, fungus, and parasites. Pneumonia is more common in people who have pre-existing lung diseases or compromised immune systems, and it primarily affects small children and the elderly. Diagnosis of pneumonia can be difficult, especially when relying on medical imaging, because symptoms may not be immediately apparent. Convolutional neural networks (CNNs) have recently shown potential in medical imaging applications. A CNN-based deep learning model is being built as part of ongoing research to aid in the detection of pneumonia using chest X-ray images. The dataset used for training and evaluation includes images of people with normal lung conditions as well as photos of people with pneumonia. Various preprocessing procedures, such as data augmentation, normalization, and scaling, were used to improve the accuracy of pneumonia diagnosis and extract significant features. In this study, a framework for deep learning with four pre-trained CNN models—InceptionNet, ResNet, VGG16, and DenseNet—was used. To take use of its key advantages, transfer learning utilizing DenseNet was used. During training, the loss function was minimized using the Adam optimizer. The suggested approach seeks to improve early diagnosis and enable fast intervention for pneumonia cases by leveraging the advantages of several CNN models. The outcomes show that CNN-based deep learning models may successfully diagnose pneumonia in chest X-ray pictures.
Copyright © by EnPress Publisher. All rights reserved.