How can social enterprises implement Total Quality Management (TQM) to tackle urgent social issues within their organizational framework while also ensuring their continued viability? To address this question, this study aims to explore the organizational approach to the adoption and implementation of TQM practices and their efficacy in mitigating pressing social challenges and maintaining financial sustainability. It adopts a qualitative multiple-case research design involving 3 social enterprises to explore the research phenomenon. Following qualitative research analysis process using NVivo, our findings highlight a prevalent, short-term outlook in managing TQM, hindering the full potential of TQM to achieve both social impact and organizational sustainability. More specifically, they expose a significant dissonance within the case organizations’ TQM implementations: the contrast between the current state, indicative of what it is, and the ideal state, indicative of what it should be. Altogether, the study advocates leveraging TQM for long-term excellence and alignment in social enterprises (as opposed to short-term mediocrity and disarray), thereby facilitating the achievement of both social impact and financial sustainability.
Carbon based materials are really an integral component of our lives and widespread research regarding their properties was conducted along this process. The addition of dopants to carbon materials, either during the production process or later on, has been actively investigated by researchers all over the world who are looking into how doping can enhance the performance of materials and how to overcome the current difficulties. This study explores synthesis methods for nitrogen-doped carbon materials, focusing on advancements in adsorption of different pollutants like CO2 from air and organic, inorganic and ions pollutants from water, energy conversion, and storage, offering novel solutions to environmental and energy challenges. It addresses current issues with nitrogen-doped carbon materials, aiming to contribute to sustainable solutions in environmental and energy sciences. Alongside precursor types and synthesis methods, a significant relationship exists between nitrogen content percentage and adsorption capacity in nitrogen-doped activated carbon. Nitrogen content ranges from 0.64% to 11.23%, correlating with adsorption capacities from 0.05 mmol/g to 7.9 mmol/g. Moreover, an electrochemical correlation is observed between nitrogen atom increase and specific capacity in nitrogen-doped activated carbon electrodes. Higher nitrogen percentage corresponds to increased specific capacity and capacity retention. This comprehensive analysis sheds light on the potential of nitrogen-doped carbon materials and highlights their significance in addressing critical environmental and energy challenges.
Forests have ecological functions in water conservation, climate regulation, environmental purification, soil and water conservation, biodiversity protection and so on. Carrying out forest ecological quality assessment is of great significance to understand the global carbon cycle, energy cycle and climate change. Based on the introduction of the concept and research methods of forest ecological quality, this paper analyzes and summarizes the evaluation of forest ecological quality from three comprehensive indicators: forest biomass, forest productivity and forest structure. This paper focuses on the construction of evaluation index system, the acquisition of evaluation data and the estimation of key ecological parameters, discusses the main problems existing in the current forest ecological quality evaluation, and looks forward to its development prospects, including the unified standardization of evaluation indexes, high-quality data, the impact of forest living environment, the acquisition of forest level from multi-source remote sensing data, the application of vertical structural parameters and the interaction between forest ecological quality and ecological function.
Artificial intelligence chatbots can be used to conduct research effectively and efficiently in the fifth industrial revolution. Artificial intelligence chatbots are software applications that utilize artificial intelligence technologies to assist researchers in various aspects of the research process. These chatbots are specifically designed to understand researchers’ inquiries, provide relevant information, and perform tasks related to data collection, analysis, literature review, collaboration, and more. The purpose of this study is to investigate the use of artificial intelligence chatbots for conducting research in the fifth industrial revolution. This qualitative study adopts content analysis as its research methodology, which is grounded in literature review incorporating insights from the researchers’ experiences with utilizing artificial intelligence. The findings reveal that researchers can use artificial intelligence chatbots to produce quality research. Researchers are exposed to various types of artificial intelligence chatbots that can be used to conduct research. Examples are information chatbots, question and answer chatbots, survey chatbots, conversational agents, peer review chatbots, personalised learning chatbots and language translation chatbots. Artificial intelligence chatbots can be used to perform functions such as literature review, data collection, writing assistance and peer review assistance. However, artificial intelligence chatbots can be biased, lack data privacy and security, limited in creativity and critical thinking. Researchers must be transparent and take in consideration issues of informed content and data privacy and security when using artificial intelligence chatbots. The study recommends a framework on artificial intelligence chatbots researchers can use to conduct research in the fifth industrial revolution.
This study explores the impact of technological innovations on audit transparency, objectivity, and assurance. The study employs a systematic literature review methodology, analyzing a wide range of scholarly articles, research papers, and reports to synthesize the findings. The methodology involved identifying keywords, conducting comprehensive searches in academic databases, and evaluating the selected literature. The study identifies key themes on how technological innovations impact audit practices through analysis of the literature. The impacts of technology include enhanced audit transparency through improved documentation capabilities, real-time reporting, and increased stakeholder engagement. Technological advancements bolster audit objectivity by automating repetitive tasks, facilitating advanced data analysis, and promoting standardized audit procedures. However, the analysis highlighted challenges associated with the use of technology in audits including complex technology implementation and the potential for biases. This research study contributes to the existing body of knowledge by consolidating relevant research and insights on the subject matter.
Soil salinization is a difficult challenge for agricultural productivity and environmental sustainability, particularly in arid and semi-arid coastal regions. This study investigates the spatial variability of soil electrical conductivity (EC) and its relationship with key cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO32⁻, HCO3⁻, SO42⁻) along the southeastern coast of the Caspian Sea in Iran. Using a combination of field-based soil sampling, laboratory analyses, and Landsat 8 spectral data, linear Multiple Linear Regression and Partial Least Squares Regression (MLR, PLSR) and nonlinear Artifician Neural Network and Support Vector Machine (ANN, SVM) modeling approaches were employed to estimate and map soil EC. Results identified Na+ and Cl⁻ as the primary contributors to salinity (r = 0.78 and r = 0.88, respectively), with NaCl salts dominating the region’s soil salinity dynamics. Secondary contributions from Potassium Chloride KCl and Magnesium Chloride MgCl2 were also observed. Coastal landforms such as lagoon relicts and coastal plains exhibited the highest salinity levels, attributed to geomorphic processes and anthropogenic activities. Among the predictive models, the SVM algorithm outperformed others, achieving higher R2 values and lower RMSE (RMSETest = 27.35 and RMSETrain = 24.62, respectively), underscoring its effectiveness in capturing complex soil-environment interactions. This study highlights the utility of digital soil mapping (DSM) for assessing soil salinity and provides actionable insights for sustainable land management, particularly in mitigating salinity and enhancing agricultural practices in vulnerable coastal systems.
Copyright © by EnPress Publisher. All rights reserved.