The Belt and Road Initiative (BRI) aims to enhance connectivity and collaboration among 60 countries and beyond in Asia, Africa and Europe. Information and communications technology (ICT) is an indispensable component of the initiative, critical in providing fundamental communication channels for global financial transactions, trade exchanges and transport and energy connectivity, and socio cultural collaboration and scientific exchanges between people, organizations and countries along the BRI corridors. Previously constrained by infrastructure deficits in ICT, the Asia-Pacific region is accelerating its efforts to provide reliable and affordable broadband networks throughout the region, to contribute to successful implementation of the Sustainable Development Goals (SDG).
Within the BRI corridors, this study which has been undertaken as part of the research programme of the United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) on promoting regional economic cooperation and integration, focuses on the China-Central Asia Corridor (China, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan), giving attention to the sub-region’s specific challenges, namely limited international transit opportunities and an increase in bandwidth requirements that is expected to grow exponentially, as the fourth industrial evolution centered on automation and artificial intelligence gathers momentum. The sub-region is characterized as highly dependent on the ease and costs of connecting to neighboring countries for transit, as many countries in the sub-region are landlocked developing countries (LLDC). Because of the geographical features and other factors, the development potential of Central Asia and its integration into globalization, continues to be stymied by insufficient international bandwidth and high transit costs to access international links. Therefore, improved ICT connectivity in Central Asia through the BRI corridor could result in improved availability and affordability of broadband networks and services in the sub-region.
For the purpose of this study, a gap analysis is the methodology that underpins the proposed topology for the China-Central Asia Corridor. The analysis included examining the current state of the optic infrastructure, such as existing and planned fiber-optic networks, existing Internet Exchange Points (IXPs) and international gateways. The study also identifies the key factors that determine the desired future state of infrastructure deployment for the BRI initiative. A topology that consists of connecting Almaty (Kazakhstan) and Urumqi (China), as core nodes, is proposed based on a partial mesh topology. Over and above this core finding, the study concludes that digital infrastructure connectivity has a tendency of lagging behind the rapid opportunities evolving, and the study therefore advocates for sub-regional and regional approaches, including the BRI and Asia-Pacific Information Superhighway (AP-IS) in further expanding regional broadband networks. A key recommendation of the study is co-deployment of broadband infrastructure along passive infrastructure, as an additional cost effective means of achieving fast and affordable broadband connectivity for all.
Chinese municipalities have developed a large stock of capital assets during a period of rapid growth and urbanization, but have yet to modernize asset management practices. Cities face challenges such as premature decline of fixed assets and spiking liabilities related to operating and maintaining assets. This paper evaluates the asset management practices in three selected small cities and towns in China, using a benchmarking assessment tool followed by an in-depth field assessment. The paper finds that overall performance is below half the international benchmark for good practice in all three cities. Management practices are considerably more advanced for land than for buildings and infrastructure. Key deficiencies in data availability and reporting, governance, capacity, and financial management indicate increased risks for local government finance and the delivery of public services. For small cities and towns where public revenues are often uncertain and limited, urban public services will be at risk of deterioration unless good asset management practices are put in place. The paper recommends strategic actions for upper and lower levels of government, to advance local asset management practices and facilitate the reform agenda.
Infrastructure development is critical for sustaining Asia’s economic growth. Unfortunately, huge financing gaps—estimated by a recent Asian Development Bank study to be USD22.5 trillion—constrain the ability of most emerging Asian countries to fully realize the benefits of infrastructure development. For instance, over 70% of infrastructure investments in Asia are still funded by public resources, which pose acute financing challenges for many countries with limited budgets and fiscal constraints. This paper discusses some of the challenges associated with public financing of infrastructure projects in emerging Asian countries, before introducing some new options for alleviating their infrastructure investment needs. In particular, it proposes a new approach to infrastructure financing by utilizing the spillover effects of infrastructure investment, where additional revenues generated from such investment can be channeled back to investors as subsidy to increase the returns to their investment. The paper also argues the need for Asian countries to implement fiscal reforms and to develop a more balanced approach to financing, one that involves both the private and public sector.
Using a Global Trade Analysis Project (GTAP) model, and China as the base for analytical comparison, this paper shows that there are significant economic benefits to China and the participating countries along all six Belt and Road Initiative (BRI) economic corridors. However, to maximize these benefits, the social and environmental risks need to be well managed. The analysis shows a clear sequencing in terms of priority corridors. Two corridors have minimal investments and immediate returns, two corridors have significant investments with huge returns, and two corridors have high investments with lower returns. Overall, the paper demonstrates that to ensure the sustainability of any BRI corridor development, there is a need to consider its costs and benefits from the economic, social and environmental perspectives.
This problem is a solar hut photovoltaic cell in the attached and overhead two installation methods, the type of photovoltaic cells and array mode and inverter type optimization design issues. In question 1, since the photovoltaic cells are attached to the roof and exterior surfaces, the direction and angle of the battery are uniquely determined by the direction and angle of the attached surface. The problem is translated to optimize the installation of a certain type on a single surface area (array) of photovoltaic cells, so that the total amount of solar photovoltaic power generation as much as possible, and the unit power generation costs as small as possible, which is a multi-objective optimization problem. The problem can be discussed in the ideal environment in a single surface area of the battery installation optimization program, and then the actual environment of the multi-surface optimization. In the solution to Problem 1, the unit on the south of the roof of the battery at the moment to accept the solar energy formula is generated. The definition of and is the moment of direct radiation intensity, for the moment the sun and the south of the roof of the plane where the angle, for the level of horizontal radiation intensity, for the south of the roof and the horizontal angle, the planefor the plane, the center of the heart, the vertical upward direction is the axis of the positive coordinate system, obtained with the sun height angle , the sun azimuth , red angle, angle and the sun when the relationship is generated. The conclusion is only installed in the small roof surface type of battery C11, and the rest of the surface is not installed. 35 years of electricity generation is 77126 degrees, the economic benefits of 16,488 yuan, the recovery period of 21.3 years. In question 2, because the photovoltaic cells in the roof and the external wall surface can be installed overhead, the panel orientation and tilt will affect the efficiency of photovoltaic cells. Therefore, in the optimization scheme of Problem 1, the orientation and inclination of the panel on each surface are further adjusted to calculate the optimum orientation and inclination of the panel on each surface. The problem can be in the ideal weather environment to establish the sun running and the battery board efficiency model, and then the measured environment test. The optimal orientation of the panel is southward, and the optimal angle with the ground plane is 39.89 degrees. The conclusion is only installed in the small roof surface type of battery C11, and the rest of the surface is not installed. 35 years of generating capacity of 82165.2 degrees, the economic benefits of 18,998 yuan, the recovery period of 13 years. In question 3, by the optimization of the above two issues, in the building to meet the requirements of the hut under the design of the various aspects of the cabin and battery installation, and further optimize the total power generation of the hut, economic benefits. The whole model solver is run in MATLAB7.0.
Nowadays, our life needs more and more electricity, and our lives cannot be without electricity, which requires our power to develop more quickly. Power plants are undoubtedly the place where electricity is produced. And now most of the power plant or chemical energy can be converted into heat, and then through the heat to do power production. The boiler is the main part of the power plant. Boiler unit consists of boiler body equipment and auxiliary equipment. The main body of the boiler consists of 'pot' (soft drinks system) and 'furnace' (combustion system). Baotou thermal power plant is mainly burning gas. The gas and air are at a certain rate into the furnace burning. This can greatly reduce the pollution of the environment, but also the full use of fuel. The soda system is mainly carried out in the drum. The heat generated by the combustion system heats the water in the drum, producing steam and then pushing the steam turbine into mechanical energy and finally into electrical energy. This has a high demand for water level, water composition, and the temperature of the steam produced in the drum. The water level should have upper and lower bounds, keeping it within a certain range. Water level is too high, will affect the steam drum soda separation effect, so that the steam drum exports of saturated steam with water increased, causing damage to the turbine, will cause serious explosion. And the water level is too low, it will affect the natural circulation of the normal, serious will make the individual water pipe to form a free water, resulting in flow stagnation, resulting in local metal wall overheating and burst pipe. Water in the heating at the same time will form a lot of scale, if not the chemical treatment of water will be in the formation of scale in the drum, cleaning more difficult, so the damage to the drum. The pressure of the drum is also an important control variable, and pressure control is highly correlated with liquid level control. It is necessary to ensure the integrity of the equipment, but also to ensure safety, followed by ensuring that the process of normal operation of the drum water. This time, the design is mainly for the unit steam temperature control system design. Steam temperature is one of the important indicators of boiler operation quality. It is too high and too low will significantly affect the power plant safety and economy. If the temperature of the steam is low, it will cause the power plant to increase the heat consumption and increase the axial thrust of the turbine to cause the thrust bearing to overload, but also cause the steam turbine to increase the final steam humidity, thus reducing the efficiency of the turbine, aggravating the erosion of the blade. On the contrary, the steam temperature is too high will make the super-heater wall metal strength decreased, and even burn the high temperature of the super-heater, the steam pipe and steam turbine high-pressure part will be damaged, seriously affecting safety. The boiler temperature control system mainly includes the adjustment of the superheated steam and the reheat steam temperature. The superheated steam temperature is the highest temperature in the boiler soda system. The stability of the steam temperature is very important for the safe and economical operation of the unit. Therefore, in the boiler operation, must ensure that the steam temperature in the vicinity of the specified value, and the temperature of the super-heater tube wall does not exceed the allowable working temperature.
Copyright © by EnPress Publisher. All rights reserved.