The study investigates the impact of artificial intelligence (AI)-powered chatbots on brand dynamics within the banking sector, focusing on the interrelationships between AI implementation and key brand dimensions, including awareness, equity, image, and loyalty. Using structural equation modeling (SEM) analysis on data collected from 520 banking customers, the study tests eight hypotheses to explore the direct and indirect effects of AI-driven interactions on brand development. The findings reveal that AI chatbots significantly enhance brand awareness in banking services, demonstrating moderate positive effects on both brand equity and brand image. Notably, while brand awareness exerts a strong influence on brand image, it does not have a significant direct effect on brand loyalty. Instead, the study shows that brand loyalty is primarily developed through the mediating effects of brand equity and image, with brand image exerting a particularly strong influence on brand equity. For banking practitioners, these insights suggest a need to integrate AI chatbots within a comprehensive brand strategy that merges technological innovation with traditional relationship-building approaches. Limitations of the study and potential directions for future research are also discussed, providing avenues for further exploration of AI’s role in brand management.
Carbon based materials are really an integral component of our lives and widespread research regarding their properties was conducted along this process. The addition of dopants to carbon materials, either during the production process or later on, has been actively investigated by researchers all over the world who are looking into how doping can enhance the performance of materials and how to overcome the current difficulties. This study explores synthesis methods for nitrogen-doped carbon materials, focusing on advancements in adsorption of different pollutants like CO2 from air and organic, inorganic and ions pollutants from water, energy conversion, and storage, offering novel solutions to environmental and energy challenges. It addresses current issues with nitrogen-doped carbon materials, aiming to contribute to sustainable solutions in environmental and energy sciences. Alongside precursor types and synthesis methods, a significant relationship exists between nitrogen content percentage and adsorption capacity in nitrogen-doped activated carbon. Nitrogen content ranges from 0.64% to 11.23%, correlating with adsorption capacities from 0.05 mmol/g to 7.9 mmol/g. Moreover, an electrochemical correlation is observed between nitrogen atom increase and specific capacity in nitrogen-doped activated carbon electrodes. Higher nitrogen percentage corresponds to increased specific capacity and capacity retention. This comprehensive analysis sheds light on the potential of nitrogen-doped carbon materials and highlights their significance in addressing critical environmental and energy challenges.
Forests have ecological functions in water conservation, climate regulation, environmental purification, soil and water conservation, biodiversity protection and so on. Carrying out forest ecological quality assessment is of great significance to understand the global carbon cycle, energy cycle and climate change. Based on the introduction of the concept and research methods of forest ecological quality, this paper analyzes and summarizes the evaluation of forest ecological quality from three comprehensive indicators: forest biomass, forest productivity and forest structure. This paper focuses on the construction of evaluation index system, the acquisition of evaluation data and the estimation of key ecological parameters, discusses the main problems existing in the current forest ecological quality evaluation, and looks forward to its development prospects, including the unified standardization of evaluation indexes, high-quality data, the impact of forest living environment, the acquisition of forest level from multi-source remote sensing data, the application of vertical structural parameters and the interaction between forest ecological quality and ecological function.
Building cooling load depends on heat gains from the outside environment. Appropriate orientation and masonry materials play vital roles in the reduction of overall thermal loads buildings. A net-zero energy building performance has been analyzed in order to ascertain the optimum orientation and wall material properties, under the climatic conditions of Owerri, Nigeria. Standard cooling load estimation techniques were employed for the determination of the diurnal interior load variations in a building incorporating renewable energy as the major energy source, and compared with the situation in a conventionally powered building. The results show a 19.28% reduction in the building’s cooling load when brick masonry was used for the wall construction. It was observed that a higher heat gain occurred when the building faced the East-West direction than when it was oriented in the North-South direction. Significant diurnal cooling loads variation as a result of radiation through the windows was also observed, with the east facing windows contributing significantly higher loads during the morning hours while the west facing windows contributed higher amounts in the evening. The economic analysis of the net-zero energy building showed an 11.63% reduction in energy cost compared to the conventional building, with a 7-year payback period for the use of Solar PV systems. Therefore, the concept of net-zero energy building will not only help in energy conservation, but also in cost savings, and the reduction of carbon footprint in the built environment.
This paper employs a sample of Chinese A-share listed companies spanning from 2011 to 2022 to empirically investigate the influence of climate policy uncertainty on the corporate cost of debt, based on the theory of financial friction. We find that climate policy uncertainty significantly increases the corporate cost of debt, and the result is supported by robustness tests. To avoid biases arisen from endogeneity, this paper introduces an instrumental variable approach and propensity score matching method for verification. The endogeneity test results support the baseline regression results as well. Finally, this paper also discovers that financing constraints are the potential mechanism behind the impact of climate policy uncertainty on the corporate cost of debt.
Innovation management is an organizational iterative process of seeking and selecting new opportunities and ideas, implementing them, and capturing value from the results obtained. In the defense sector, due to the increasing interdependence between military capabilities and technology, countries have adopted innovation management approaches to drive the modernization of their defense industrial bases, promoting the development and integration of advanced technologies. This study presents an original systematic literature review on innovation management approaches applied to defense in developing countries. After the phases of identification and screening, 62 documents both from academic and gray literature were analyzed and categorized into 22 distinct approaches. The advantages, disadvantages, contexts, and potential applications of each approach were discussed. The findings show that the appropriate use of these approaches can strengthen the innovation capacity and technological independence of late-industrializing countries, consolidating their position in the global defense landscape and ensuring their sovereignty and continuous technological progress.
Copyright © by EnPress Publisher. All rights reserved.