Medicare, a major healthcare program under the Centers for Medicare & Medicaid Services (CMS) has extended telemedicine services within several states in the US for different specialties for which it reimburses in order to establish a qualitative and accessible healthcare system. In parallel, it has been seen that teleradiology services by American Board Certified radiologists based offshore can significantly supplement healthcare delivery in the US by mitigating the shortage of radiologists and enhance outcomes of patient care especially for after-hours emergency work. Teleradiology can help workflow by improving workload distribution, lowering the cost of reporting, shortening turn-around-time for reports, and improving quality of life for staff. The aim of the article is to provide perspective on Medicare reimbursement of offshore telereporting services. We submit that due to its value proposition and contribution to healthcare, offshore telereporting by American Board Certified Radiologists is worthy of Medicare reimbursement and should be re-evaluated for its credits.
Renewable energy is gaining momentum in developing countries as an alternative to non-renewable sources, with rooftop solar power systems emerging as a noteworthy option. These systems have been implemented across various provinces and cities in Vietnam, accompanied by government policies aimed at fostering their adoption. This study, conducted in Ho Chi Minh City, Vietnam investigates the factors influencing the utilization of rooftop solar power systems by 309 individuals. The research findings, analyzed through the Partial least squares structural equation modeling (PLS-SEM) model, reveal that policies encouragement and support, strategic investment costs, product knowledge and experience, perceived benefits assessment, and environmental attitudes collectively serve as predictors for the decision to use rooftop solar power systems. Furthermore, the study delves into mediating and moderating effects between variables within the model. This research not only addresses a knowledge gap but also furnishes policymakers with evidence to chart new directions for encouraging the widespread adoption of solar power systems.
Numerical study of subcooled and saturated flow boiling in the curved and helically coiled tubes in presence of phase change is one of the challenging area of CFD studies. In this paper, the CFD modeling of the nucleate and convective flow boiling in the small helically coiled tube at low vapor quality (up to the 18.93 percent) region is studied. A proper Eulerian-based mathematical model is used for interphase exchange forces and heat transfer between two phases in CFD modeling using Bulk boiling model. The results show that, the inner and the bottom wall of the helically coiled tube have the lowest and the highest heat transfer coefficient, respectively. The effect of change in coil diameter, helical pitch and tube diameter is investigated on the counters of vapor volume fraction. It is seen that at low vapor quality flows, the heat transfer coefficient is enhanced by decreasing in coil diameter, tube diameter and increasing in coil pitch of helically coiled tube.
Recently, carbon nanocomposites have garnered a lot of curiosity because of their distinctive characteristics and extensive variety of possible possibilities. Among all of these applications, the development of sensors with electrochemical properties based on carbon nanocomposites for use in biomedicine has shown as an area with potential. These sensors are suitable for an assortment of biomedical applications, such as prescribing medications, disease diagnostics, and biomarker detection. They have many benefits, including outstanding sensitivity, selectivity, and low limitations on detection. This comprehensive review aims to provide an in-depth analysis of the recent advancements in carbon nanocomposites-based electrochemical sensors for biomedical applications. The different types of carbon nanomaterials used in sensor fabrication, their synthesis methods, and the functionalization techniques employed to enhance their sensing properties have been discussed. Furthermore, we enumerate the numerous biological and biomedical uses of electrochemical sensors based on carbon nanocomposites, among them their employment in illness diagnosis, physiological parameter monitoring, and biomolecule detection. The challenges and prospects of these sensors in biomedical applications are also discussed. Overall, this review highlights the tremendous potential of carbon nanomaterial-based electrochemical sensors in revolutionizing biomedical research and clinical diagnostics.
The main long-term goal of international communities is to achieve sustainable development. This issue is currently highly topical in most European Union (EU) countries due to the ongoing energy crisis. Building Integrated Photovoltaics (BIPV), which can be integrated into the building surface (roof or facade), thereby replacing conventional building materials, contributes significantly to achieving zero net energy buildings. However, fire safety is important when using BIPV as a structural system in buildings, and it is essential that the application of BIPV as building facades and roofs does not adversely affect the safety of the buildings, their occupants, or the responding firefighters. As multifunctional products, BIPV modules must meet fire safety requirements in the field of electrical engineering as well as in the construction industry. In terms of building regulations, the fire safety requirements of the BIPV must comply with national building regulations. Within this article, aspects and fire hazards associated with BIPV system installations will be defined, including proposals for installation and material requirements that can help meet fire safety.
Nickel Oxide (NiO) nanoparticles (NPs), doped with manganese (Mn) and cobalt (Co) at concentrations up to 8%, were synthesized using the composite hydroxide method (CHM). X-ray diffraction (XRD) analysis confirmed the formation of a cubic NiO structure, with no additional peaks detected, indicating successful doping. The average crystallite size was determined to range from 15 to 17.8 nm, depending on the dopant concentration. Scanning electron microscopy (SEM) images revealed mostly spherical, agglomerated particles, likely due to magnetic interactions. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the incorporation of Mn and Co into the NiO lattice, consistent with the XRD results. The dielectric properties exhibited a high dielectric constant at low frequencies, which can be attributed to ion jump orientation and space charge effects. The imaginary part of the dielectric constant decreased with increasing frequency, as it became harder for electrons to align with the alternating field at higher frequencies. Both the real and imaginary dielectric constants showed behavior consistent with Koop’s theory, increasing at low frequencies and decreasing at higher frequencies. Dielectric loss was primarily attributed to dipole flipping and charge migration. AC conductivity increased with frequency, and exhibited higher conductivity at high frequencies due to small polaron hopping. These co-doped NPs show potential for applications in solid oxide fuel cells.
Copyright © by EnPress Publisher. All rights reserved.