Ino S. Theory of transmission coefficient of X-rays evanescent wave for grazing incidence. Journal of the Physical Society of Japan.1996; 65(10): 3248-3253.
Bieske EJ, Soliva A, Welker MA, et al. The B← X electronic spectrum of N2+–He. The Journal of Chemical Physics.1990; 93(6): 4477-4478.
Bonzi EV. Measurement of the radiative vacancy transfer probabilities from the L3 to M and to N shells for W, Re and Pb using synchrotron radiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.2006;245(2): 363-366.
Tombesi F, Cappi M, Reeves JN, et al. Evidence for ultra-fast outflows in radio-quiet AGNs-I. Detection and statistical incidence of Fe K-shell absorption lines. Astronomy & Astrophysics.2010; 521, A57.
Bennal AS, Badiger NM (2007). Measurement of K shell absorption and fluorescence parameters for the elements Mo, Ag, Cd, In and Sn using a weak gamma source. Journal of Physics B: Atomic, Molecular and Optical Physics.2007; 40(11): 2189.
Sidhu BS, Dhaliwal AS, Mann KS, et al (2011). Measurement of K-shell absorption edge jump factors and jump ratios of some medium Z elements using EDXRF technique. Radiation Physics and Chemistry. 2001; 80(1): 28-32.
Oen OS, Holmes DK. Cross sections for atomic displacements in solids by gamma rays. Journal of Applied Physics.1959; 30(8): 1289-1295.
Budak G, Polat R. Measurement of the K X-ray absorption jump factors and jump ratios of Gd, Dy, Ho and Er by attenuation of a Compton peak. Journal of Quantitative Spectroscopy and Radiative Transfer.2004; 88(4): 525-532.
Niranjana KM, Krishnananda, Badiger NM, et al. Determination of K shell parameters of silver using high resolution HPGe detector spectrometer. International Journal of Nuclear Energy Science and Technology.2003; 7(3): 179-190.
Han I, Şahin M, Demir L, et al. Measurement of K X-ray fluorescence cross-sections, fluorescence yields and intensity ratios for some elements in the atomic range 22⩽ Z⩽ 68. Applied radiation and isotopes. 2007; 65(6): 669-675.
Jacob G, Kisch HJ, van der Pluijm. The relationship of phyllosilicate orientation, X-ray diffraction intensity ratios, and c/b fissility ratios in metasedimentary rocks of the Helvetic zone of the Swiss Alps and the Caledonides of Jaemtland, central western Sweden. Journal of Structural Geology. 2002; 22(2): 245-258.
Ertuğral B, Apaydın G, Çevik U, et al; Kβ/Kα X-ray intensity ratios for elements in the range 16⩽ Z⩽ 92 excited by 5.9, 59.5 and 123.6 keV photons. Radiation Physics and chemistry.2007; 76(1): 15-22.
Yılmaz R. Kβ/Kα X-ray intensity ratios for some elements in the atomic number range 28≤ Z≤ 39 at 16.896 keV. Journal of Radiation Research and Applied Sciences.2017; 10(3):172-177.
Baydaş E, Öz E. Chemical effects in the Kα and Kβ1, 3 of X-ray emission spectra of Fe. Journal of Electron Spectroscopy and Related Phenomena.2012; 185(1-2), 27-31.
Porikli S. Influence of the chemical environment changes on the line shape and intensity ratio values for La, Ce and Pr L lines spectra. Chemical Physics Letters. 2011; 508(1-3), 165-170.
Scofield JH. Theoretical photoionization cross sections from 1 to 1500 keV (No. UCRL--51326). California Univ., Livermore. Lawrence Livermore Lab, 1973.
Hubbell JH, Trehan PN, Singh N, et al. A Review, Bibliography, and Tabulation of K, L, and Higher Atomic Shell 7X‐Ray Fluorescence Yields. Journal of Physical and Chemical Reference Data.2004; 23(2): 339-364.
Gerward L, Guilbert N, Jensen KB, et al. (2001). X-ray absorption in matter. Reengineering XCOM. Radiation Physics and Chemistry.2001; 60(1-2):23-24.
Krause MO. (1979). Atomic radiative and radiationless yields for K and L shells. Journal of physical and chemical reference data.1979; 8(2): 307-327