Wong CL, Dinish US, Schmidt MC, et al. Non-labeling multiplex surface enhanced Raman scattering (SERS) detection of volatile organic compounds (VOCs). Analytica Chimica Acta 2014; 844: 54–60.
Indrasekara ASDS, Meyers S, Shubeita S, et al. Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale 2014; 6(15): 8891–8899.
Wang Y, Lee K, Irudayaraj J. Silver Nanosphere SERS Probes for sensitive identification of pathogens. The Journal of Physical Chemistry C 2010; 114(39): 16122–16128.
Bian J, Shu S, Li J, et al. Reproducible and recyclable SERS substrates: Flower-like Ag structures with concave surfaces formed by electrodeposition. Applied Surface Science 2015; 333: 126–133.
Bell SJ, McCourt M. SERS enhancement by aggregated Au colloids: Effect of particle size. Physical Chemistry Chemical Physics 2009; 11(34): 7455–7462.
Zhao B, Lu Y, Zhang Y, et al. Silver dendrites decorated filter membrane as highly sensitive and reproducible three dimensional surface enhanced Raman scattering substrates. Applied Surface Science 2016; 387: 431–436.
Kang L, Xu P, Chen D, et al. Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy. The Journal of Physical Chemistry C 2013; 117(19): 10007–10012.
Strickland AD, Batt CA. Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods. Analytical Chemistry 2009; 81(8): 2895–2903.
Li F, Wang J, Lai Y, et al. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Biosensors & Bioelectronics 2013; 39(1): 82–87.
Liu J, White I, DeVoe DL. Nanoparticle-functionalized porous polymer monolith detection elements for surface-enhanced Raman scattering. Analytical Chemistry 2011; 83(6): 2119–2124.
Liu R. Study on the removal of phenol in coking wastewater by coagulation with composite flocculants [Master’s thesis]. Taiyuan: North University of China; 2018.
Su Y. A study on the adsorption of anionic dye and micro-molecular organics by cationic agents modified zeolite [Master’s thesis]. Zhengzhou: Zhengzhou University; 2014.
Haque E, Lee JE, Jang IT, et al. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromiumbenzenedicarboxylates. Journal of Hazardous Materials 2010; 181(1-3): 535–542.
Khan NA, Jhung SH. Adsorptive removal and separation of chemicals with metal-organic frameworks: Contribution of π-complexation. Journal of Hazardous Materials 2017; 325: 198–213.
Seo YS, Khan NA, Jhung SH. Adsorptive removal of methylchlorophenoxypropionic acid from water with a metal-organic framework. Chemical Engineering Journal 2015; 270: 22–27.
Zhang Y, Hu Y, Li G, et al. A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy. Microchimica Acta 2019; 186(7): 477.
Cai Y, Wu Y, Xuan T, et al. Core-shell Au@metal-organic frameworks for promoting raman detection sensitivity of methenamine. ACS Applied Materials & Interfaces 2018; 10(18): 15412–15417.
Li Q, Gong S, Huang F, et al. Tailored necklace-like Ag@ZIF-8 core/shell heterostructure nanowires for high-performance plasmonic SERS detection. Chemical Engineering Journal 2019; 371: 26–33.
Hu Y, Liao J, Wang D, et al. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Analytical chemistry 2014; 86(8): 3955–3963.
Xuan T, Gao Y, Cai Y, et al. Fabrication and characterization of the stable Ag-Au-metal-organic-frameworks: An application for sensitive detection of thiabendazole. Sensors and Actuators B: Chemical 2019; 293: 289–295.