Duxson P, Provis JL, Lukey GC, et al. The role of inorganic polymer technology in the development of green concrete? Cement and Concrete Research 2007; 37(12): 1590–1597.
Correia EAS. Geopolymeric matrix composites reinforced with vegetable fibers of abacaxi and sisal (in Spanish) [thesis]. João Pessoa: Universidade Federal da Paraíba; 2011.
Rodriguez E, de Gutierrez RM, Bernal S, et al. Effect of the SiO2/Al2O3 and Na2O/SiO2 modules on the properties of geopolymeric systems based on a metakaolin (in Spanish). Revista Facultad de Ingeniería 2009; (49): 30–41.
Ohno MV, Li C. A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites. Construction and Building Materials 2014; 57: 163–168.
Van Jaarsveld J, Van Deventer J, Lorenzen L. The potential use of geopolymeric materials to immobilise toxic metals: Part ⅰ: Theory and applications. Minerals Engineering 1997; 10(7): 659–669.
Zhang Y, Sun W, Chen Q, et al. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials 2007; 143(1–2): 206–213.
Li Q, Sun Z, Tao D, et al. Immobilization of simulated radionuclide 133Cs+ by fly ash-based geopolymer. Journal of Hazardous Materials 2013; 262: 325–331.
Launey ME, Ritchie RO. On the fracture toughness of advanced materials. Advanced Materials 2009; 21(20): 2103–2110.
Saheb N, Qadir N, Siddiqui M, et al. Characterization of nanoreinforcement dispersion in inorganic nanocomposites: A review. Materials 2014; 7(6): 4148–4181.
Hammell JA. The influence of matrix composition and reinforcement type on the properties of polysialate composites [PhD thesis]. New Brunswick: Rutgers The State University of New Jersey; 2000.
Rahman AS. Nanofiber reinforcement of a geopolymer matrix for improved composite materials mechanical performance [PhD thesis]. Colorado: Colorado State University; 2015.
Osório PDL. Design of an anti-turned saferoom in geopolymer concrete (in Portuguese) [PhD thesis]. Minho: Universidade do Minho; 2007.
Gómez S, Ramón BB, Guzman R. Comparative study of the mechanical and vibratory properties of a composite reinforced with fique fibers versus a composite with e-glass fibers. Revista UIS Ingenierías 2018; 17(1): 43–50.
Sanes Lagares DA. Influence of polypropylene microfibers and microsilica on the strength of concrete at 4000 and 3000 PSI (in Spanish) [MSc thesis]. Cartagena: Universidad Tecnológica De Bolívar; 2017.
Assaedi H, Shaikh F, Low IM. Effect of nano-clay on mechanical and thermal properties of geopolymer. Journal of Asian Ceramic Societies 2016; 4(1): 19–28.
Abbasi SM, Ahmadi H, Khalaj G, et al. Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes. Ceramics International 2016; 42(14): 15171–15176.
Gao K, Lin K, Wang D, et al. Cheng, Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers. Construction and Building Materials 2013; 48: 441–447.
Saafi M, Andrew K, Tang PL, et al. Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites. Construction and Building Materials 2013; 49: 46–55.
Khater HM. Physicomechanical properties of nano-silica effect on geopolymer composites. Journal of Building Materials and Structures 2016; 3(1): 1–14.
Khater H, El Gawaad HA. Characterization of alkali activated geopolymer mortar doped with MWCNT. Construction and Building Materials 2016; 102: 329–337.
Sumesh M, Alengaram UJ, Jumaat MZ, et al. Incorporation of nano-materials in cement composite and geopolymer based paste and mortar: A review. Construction and Building Materials 2017; 148: 62–84.
ParveenS, Rana S, Fangueiro R. A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. Journal of Nanomaterials 2013; 2013: 80.
Mishra S, Mishra A, Krause R, et al. Growth of silicon carbide nanorods from the hybrid of lignin and polysiloxane using sol-gel process and polymer blend technique. Materials Letters 2009; 63(88): 2449–2451.
Rincon-Joya M, Barba-Ortega JJ, Paris E. Obtaining oxide samples at low cost. Revista UIS Ingenierías 2019; 18(3): 33–38.
Meng S, Jin G, Wang Y, et al. Tailoring and application of sic nanowires in composites. Materials Science and Engineering: A 2010; 527(21–22): 5761–5765.
Akpinar S, Kusoglu I, Ertugrul O, et al. Silicon carbide particle reinforced mullite composite foams. Ceramics International 2012; 38(8): 6163–6169.
Diamanti MV, Ormellese M, Pedeferri M. Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide. Cement and Concrete Research 2008; 38(11): 1349–1353.
Cárdenas Ramírez C. Evaluation of the physical and photocatalytic properties of cement added with nanoparticles of titanium dioxide (in Spanish) [PhD thesis]. Sede Medellín: Universidad Nacional de Colombia; 2012.
Meng T, Yu Y, Qian X, et al. Effect of nano-TiO2 on the mechanical properties of cement mortar. Construction and Building Materials 2012; 29: 241–245.
Casagrande CA. Study of the incorporation of titania particles in photocatalytic mortars (in Portuguese) [MSc thesis]. Florianópolis: Universidade Federal de Santa Catarina; 2012.
Rocha T. The influence of nano-TiO2 on geopolymeric pastes (in Portuguese) [BSc thesis]. Florianópolis, Brazil: Universidade Federal de Santa Catarina; 2016.
Leite J. The influence of vermiculite on geopolymeric mortar with addition of nanotitania (in Portuguese) [BSc thesis]. Florianópolis: Universidade Federal de Santa Catarina; 2017.
Yang L, Jia Z, Zhang Y, et al. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cement and Concrete Composites 2015; 57: 1–7.
Duan P, Yan C, Luo W, et al. Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Construction and Building Materials 2016; 106: 115–125.
Llano Guerrero EA. Synthesis and characterization of alkaline activated cements metakaolin/granulated blast furnace slag base with additions of TiO2 nanoparticles [PhD thesis]. San Nicolas: Universidad Autónoma de Nuevo León; 2017.
Azevedo NH, Gleize PJ. Effect of silicon carbide nanowhiskers on hydration and mechanical properties of a portland cement paste. Construction and Building Materials 2018; 169: 388–395.
Taborda Barraza M. Mechanical performance of a geopolymer matrix composite based on metakaolin and silicon carbide nanorods (in Portuguese) [MSc thesis]. Florianópolis: Universidade Federal de Santa Catarina; 2016.
Coelho LL. Incorporation of lanthanum and graphene oxide to modulate photoactivity in TiO2 nanoparticles (in Portuguese) [MSc thesis]. Florianópolis: Universidade Federal de Santa Catarina; 2017.
Bigno I, Oliveira F, Silva F, et al. Reaction heat of geopolymer cements (in Spanish). Congresso Brasileiro de Cerâmica; 2005 Jun 6–9; São Pedro. 2005. p. 1–5.
Rahier H, Wastiels J, Biesemans M, et al. Reaction mechanism, kinetics and high temperature transformations of geopolymers. Journal of Materials Science 2007; 42(9): 2982–2996.
Ma B, Li H, Li X, et al. Influence of nano-TiO2 on physical and hydration characteristics of fly ash-cement systems. Construction and Building Materials 2016; 122: 242–253.
Lee BY, Kurtis KE. Influence of TiO2 nanoparticles on early C3S hydration. Journal of the American Ceramic Society 2010; 93(10): 3399–3405.
Zhang R, Cheng X, Hou P, et al. Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Construction and Building Materials 2015; 81: 35–41, 2015.
Chen J, Kou S, Poon C. Hydration and properties of nano-TiO2 blended cement composites. Cement and Concrete Composites 2012; 34(5): 642–649.
Yuan J, He P, Jia D, et al. SiC fiber reinforced geopolymer composites, part 1: Short SiC fiber. Ceramics International 2016; 42(4): 5345–5352.
Du F, Xie S, Zhang F, et al. Microstructure and compressive properties of silicon carbide reinforced geopolymer. Composites Part B: Engineering 2016; 105: 93–100.
Kantel T, Slosarczyk A. Influence of silicon carbide and electrocorundum on the thermal resistance of cement binders with granulated blast-furnace slag. Procedia Engineering 2017; 172: 497–504.
Nazari A, Riahi S. The effects of zinc dioxide nanoparticles on flexural strength of self-compacting concrete. Composites Part B: Engineering 2011; 42(2): 167–175.
Mueller R, Kammler HK, Wegner K, et al. OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir 2003; 19(1): 160–165.