Becker R, Chkhartishvili L, Martin P. Boron, the new graphene? Vacuum Technology & Coating 2015; 16(4): 38–44.
Chkhartishvili L. All-boron nanostructures. In: Kharisov BI, Kharissova OV, Ortiz–Mendez U (editors). CRC concise encyclopedia of nanotechnology. Boca Raton: CRC Press; 2016. p. 53–69.
Li D, Gao J, Cheng P, et al. 2D boron sheets: Structure, growth, and electronic and thermal transport properties. Advanced Functional Materials 2019; 1904349: 1–32. doi: 10.1002/adfm.201904349.
Tian Y, Guo Z, Zhang T, et al. Inorganic boron-based nanostructures: Synthesis, optoelectronic properties, and prospective applications. Nanomaterials 2019; 9(538): 1–22. doi: 10.3390/nano9040538.
Boustani I. Molecular modeling and synthesis of nanomaterials. Applications in carbon- and boron-based nanotechnology. Cham: Springer Nature; 2020.
Matsuda I, Wu K (editors). 2D boron: Boraphene, borophene, boronene. Cham: Springer Nature; 2021.
Alexandrova AN, Boldyrev AI, Zhai HJ, et al. All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coordination Chemistry Reviews 2006; 250(21–22): 2811–2866. doi: 10.1016/j.ccr.2006.03.032.
Chkhartishvili L. Quasi-planar elemental clusters in pair interactions approximation. Open Physics 2016; 14(1): 617–620. doi: 10.1515/phys-2016-0070.
Chkhartishvili L. Boron quasi-planar clusters. A mini-review on diatomic approach. In: 2017 IEEE 7th International Conference on Nanomaterials: Applications & Properties; 2017 Sep 10–15; Odessa. New York: IEEE; 2017. p. 1–5.
Chkhartishvili L. Relative stability of planar clusters B11, B12, and B13 in neutral- and charged-states. Characterization and Application of Nanomaterials 2020; 3(2): 73–80. doi: 10.24294/can.v3i2.761.
Chkhartishvili L. Relative stability of boron planar clusters in diatomic molecular model. Molecules 2022; 27(1469): 1–20. doi: 10.3390/molecules27051469.
Levitin V. Interatomic bonding in solids. Fundamentals, simulation, and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2014.
Gennes PG, Brochard–Wyart F, Quere D. Capillarity and wetting phenomena. Drops, bubbles, pearls, waves. New York: Springer; 2004.
Marques JMC, Prudente FV, Pirani F. Intermolecular forces: From atoms and molecules to nanostructures. Molecules 2022; 27(3072): 1–3. doi: 10.3390/molecules27103072.
Zhigilei LV. Course MSE 4270/6270: Introduction to atomistic simulations. Charlottesville: University Virginia; 2013.
Interatomic Potentials Repository. NIST; 2023.
Magomedov MN. Izucheniye mezhatomnogo vzaimodejstviya, obrazovaniya vakansij i samodiffuzii v kristallakh (Russian) [Study of interatomic interaction, formation of vacancies and self-diffusion in crystals]. Moscow: Physical-Mathematical Literature Press; 2010.
Muser MH, Sukhomlinov SV, Pastewka L. Interatomic potentials: Achievements and challenges. Advances in Physics X 2023; 8(1): 2093129. doi: 10.1080/23746149.2022.2093129.
Magomedov MN. The energy of interatomic interaction for crystals of elements of the carbon subgroup. High Temperature 2005; 43(2): 192–202. doi: 10.1007/s10740-005-0060-1.
Magomedov MN. On the brittleness of elementary semiconductors. Physics of the Solid State 2023; 65(2): 205–210. doi: 10.21883/PSS.2023.02.55401.521.
Magomedov MN. A method for the parameterization of the pairwise interatomic potential. Physics of the Solid State 2020; 62(7): 1126–1131. doi: 10.1134/S1063783420070136.
Magomedov MN. Study of the fcc–bcc phase transition in an Au–Fe alloy. Physics of the Solid State 2022; 64(13): 2093–2101. doi: 10.21883/PSS.2022.13.52307.145.
Magomedov MN. Changing the parameters of vacancy formation and self-diffusion in various polymorphic modifications of iron. Technical Physics 2023; 68(2): 209–217. doi: 10.21883/TP.2023.02.55474.190-22.
Bjorkas C, Henriksson KOE, Probst M, et al. A Be–W interatomic potential. Journal of Physics: Condensed Matter 2010; 22(35): 352206. doi: 10.1088/0953-8984/22/35/352206.
Erokhin KM, Kalashnikov NP. Relationships of macroscopic characteristics of a solid with the binding energy of an ion in a metal lattice. Physics of the Solid State 2021; 63(7): 973–977. doi: 10.1134/S1063783421070064.
Poluektov YM. Dvukhatomnaya model’ kvantovogo kristalla (Russian) [The biatomic model of a quantum crystal]. Low Temperatures Physics 2008; 34(4–5): 459–469.
Sdobnyakov NY, Sokolov DN, Samsonov VM, et al. Gupta multiparticle potential study of the hysteresis of the melting and solidification of gold nanoclusters. Russian Metallurgy 2012; 2012(3): 209–214. doi: 10.1134/S0036029512030111.
Thomas SP, Dikundwar AG, Sarkar S, et al. The relevance of experimental charge density analysis in unraveling noncovalent interactions in molecular crystals. Molecules 2022; 27(12): 3690. doi: 10.3390/molecules27123690.
Rekhviashvili SSh, Bukhurova MM, Sokurov AA. Quantum crystal equation of state. Technical Physics Letters 2023; 49(2): 43–45. doi: 10.21883/TPL.2023.02.55369.19368.
Wu JJ. The interactions between spheres and between a sphere and a half-space, based on the Lennard–Jones potential. Journal of Adhesion Science and Technology 2012; 26(1–3): 251–269. doi: 10.1163/016942411X576130.
Opdam J, Schelling MPM, Tuinier R. Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions. The Journal of Chemical Physics 2021; 154(7): 074902. doi: 10.1063/5.0037963.
Magomedov MN. Interfullerene interaction and properties of fullerites. High Temperature 2005; 43(3): 379–390. doi: 10.1007/s10740-005-0076-6.
Nikonova RM, Lad’yanov VI, Rekhviashvili SSh, et al. Thermal stability of C60 and C70 fullerites. High Temperature 2021; 59(2–6): 179–183. doi: 10.1134/S0018151X21020103.
Bukhurova MM, Rekhviashvili SSh. Primenenie mezhatomnykh potentsialov vzaimodejstvia dlya modelirovaniya nanosistem (Russian) [Application of interatomic interaction potentials for the simulation of nanosystems]. Bulletin of the Kamchatka Regional Association Educational and Scientific Center (Physical and Mathematical Sciences) 2020; 33(4): 166–187. doi: 10.26117/2079-6641-2020-33-4-166-187.
Alosious S, Kannam SK, Sathian SP, et al. Effects of electrostatic interactions on Kapitza resistance in hexagonal boron nitride−water interfaces. Langmuir 2022; 38(29): 8783–8793. doi: 10.1021/acs.langmuir.2c00637.
Hassani N, Hassani MR, Neek-Amal M. Boron-based cluster modeling and simulations: Application point of view. In: Wongchoosuk C (editor). Characteristics and applications of boron. London: IntechOpen; 2022. p. 1–16.
Drukarev G. The zero-range potential model and its application in atomic and molecular physics. Advances Quantum Chemistry 1978; 11: 251–274. doi: 10.1016/S0065-3276(08)60239-7.
Demkov YN, Ostrovskii VN. Zero-range potentials and their applications in atomic physics. New York, London: Plenum Press; 1988.
Dolgonosov AM. Model’ elektronnogo gaza i teorya obobshchennykh zaryadov dlya opisaniya adsorbtsii (Russian) [Electron gas model and generalized charges theory for describing interatomic forces and adsorption]. Moscow: Librokom Book House; 2009.
Shukla PK, Eliasson B. Novel attractive force between ions in quantum plasmas. Physical Review Letters 2012; 108: 165007. doi: 10.1103/PhysRevLett.108.165007.
Shukla PK, Eliasson B. Erratum: Novel attractive force between ions in quantum plasmas. Physical Review Letters 2012; 108: 219902. doi: 10.1103/PhysRevLett.108.219902.
Shukla PK, Eliasson B. Erratum: Novel attractive force between ions in quantum plasmas. Physical Review Letters 2012; 109: 019901. doi: 10.1103/PhysRevLett.109.019901.
Furudate MA, Hagebaum–Reignier D, Kim JT, et al. Resonant ionic, covalent bond, and steric characteristics present in 1Σu+ states of Li2. Molecules 2022; 27(11): 3514. doi: 10.3390/molecules27113514.
Wang Y, Walker BD, Liu C, et al. An efficient approach to large-scale ab initio conformational energy profiles of small molecules. Molecules 2022; 27(23): 8567. doi: 10.3390/molecules27238567.
Kaya S, Putz MV. Atoms-in-molecules’ faces of chemical hardness by conceptual density functional theory. Molecules 2022; 27(24): 8825. doi: 10.3390/molecules27248825.
Liu Y, An C, Liu N, et al. Noncovalent interactions and crystal structure prediction of energetic materials. Molecules 2022; 27(12): 3755. doi: 10.3390/molecules27123755.
Silva MC, Lorke M, Aradi B, et al. Self-consistent potential correction for charged periodic systems. Physical Review Letters 2021; 126: 076401. doi: 10.1103/PhysRevLett.126.076401.
Rekhviashvili SSh, Bukhurova MM, Sokurov AA. Determination of pairwise interaction of atoms from the interaction of an adatom with graphene. Russian Journal of Inorganic Chemistry 2020; 65(9): 1373–1377. doi: 10.1134/S0036023620090132.
Dolgirev PE, Kruglov IA, Oganov AR. Machine learning scheme for fast extraction of chemically interpretable interatomic potentials. AIP Advances 2016; 6(8): 085318. doi: 10.1063/1.4961886.
Smith JS, Nebgen B, Mathew N, et al. Automated discovery of a robust interatomic potential for aluminum. Nature Communications 2021; 12: 1257. doi: 10.1038/s41467-021-21376-0.
Mortazavi B, Podryabinkinc EV, Roched S, et al. Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures. Materials Horizons 2020; 9: 1–25. doi: 10.1039/D0MH00787K.
Kaya O, Colombo L, Antidormi A, et al. Revealing improved stability of amorphous boron-nitride upon carbon doping. Nanoscale Horizons 2023; 8(3): 1–7. doi: 10.1039/d2nh00520d.
Fedik N, Zubatyuk R, Kulichenko M, et al. Extending machine learning beyond interatomic potentials for predicting molecular properties. Nature Reviews Chemistry 2022; 6: 653–657. doi: 10.1038/s41570-022-00416-3.
Chkhartishvili L. On semi-classical approach to materials electronic structure. Journal of Material Science and Technology Research 2021; 8: 41–49. doi: 10.31875/2410-4701.2021.08.6.
Chkhartishvili L. How to calculate condensed matter electronic structure based on multi-electron atom semi-classical model. Condensed Matter 2021; 6(4): 46. doi: 10.3390/condmat6040046.
Maass B, Huther T, Konig K, et al. Nuclear charge radii of 10,11B. Physical Review Letters 2019; 122: 182501. doi: 10.1103/PhysRevLett.122.182501.
Dupuis M, Liu B. The ground electronic state of B2. The Journal of Chemical Physics 1978; 68(2): 2902–2910. doi: 10.1063/1.436088.
Bruna PJ, Wright JS. Strongly bound multiply excited states of B2+ and B2. The Journal of Chemical Physics 1989; 91(2): 1126–1136. doi: 10.1063/1.457185.
Bruna PJ, Wright JS. Theoretical study of the ionization potentials of boron dimer. The Journal of Physical Chemistry 1990; 94(5): 1774–1781. doi: 10.1021/j100368a014.
Langhoff SR, Bauschlicher CW. Theoretical study of the spectroscopy of B2. The Journal of Chemical Physics 1991; 95(8): 5882–5888. doi: 10.1063/1.461609.
Yang CL, Zhu ZH, Wang R, et al. Analytical potential energy functions of the neutral and cationic B2. Journal of Molecular Structure 2001; 548(1–3): 47–52. doi: 10.1016/S0166-1280(01)00372-4.
Widany J, Frauenheim T, Kohler T, et al. Density-functional-based construction of transferable nonorthogonal tight-binding potentials for B, N, BN, BH, and NH. Physical Review B 1996; 53(8): 4443–4452. doi: 10.1103/PhysRevB.53.4443.
Chkhartishvili L, Lezhava D, Tsagareishvili O, et al. Parametry osnovnogo sostoyanya diatomicheskikh molekul B2, BC, BN i BO (Russian) [Ground-state parameters of diatomic molecules B2, BC, BN and BO]. Proceedings of the Georgian Police Academy 1999; 1: 195–300.
Chkhartishvili L, Lezhava D, Tsagareishvili O. Quasi-classical determination of electronic energies and vibration frequencies in boron compounds. Journal of Solid State Chemistry 2000; 154(1): 148–152. doi: 10.1006/jssc.2000.8826.
Elliott RS. Efficient ‘universal’ shifted Lennard-Jones model for all KIM API supported species developed by Elliott and Akerson (2015) v003. OpenKIM; 2018. doi: 10.25950/962b4967.
Mierzwa G, Gordon AJ, Berski S. The nature of the triple B≡B, double B=B, single B–B, and one-electron B∙B boron-boron bonds from the topological analysis of Electron Localization Function (ELF) perspective. Journal of Molecular Structure 2020; 1221: 128530. doi: 10.1016/j.molstruc.2020.128530.
Huber KP, Herzberg H. Molecular spectra and molecular structure. IV. Constants of diatomic molecules. New York: Van Nostrand Reinhold Compay; 1979.
Tilley RJD. Understanding solids. The science of materials. New York: John Wiley & Sons; 2021.
Noei M, Ahmadaghaei N, Salari AA. Ethyl benzene detection by BN nanotube: DFT studies. Journal of Saudi Chemical Society 2017; 21(1): S12–S16. doi: 10.1016/j.jscs.2013.09.008.
Mohajeri S, Noei M, Salari AA, et al. Adsorption of phosphine on a BN nanosurface. Iranian Journal of Chemistry and Chemical Engineering 2018; 37(1): 39–45. doi: 10.30492/IJCCE.2018.26372.