Journal Browser
Search
Nanoscale water flows in networks against a total fail
Sungsook Ahn
Characterization and Application of Nanomaterials 2023, 6(1); https://doi.org/10.24294/can.v6i1.2562
Submitted:08 Aug 2023
Accepted:25 Aug 2023
Published:28 May 2023
Abstract

A failsafe network design recovering from the stressed condition against a massive supply disruption is generally useful for various applications. Water flow in plants under a tension is inherently vulnerable to an embolism, a water supply cut off, causing a death. However, the function of the network structures of leaf veins and xylem stems effectively reduces the embolism-induced failure. In this study, water transport in plants under the pressurized conditions compared to the normal physiological conditions is observed by X-ray imaing. By examining embolism-induced water supply limits in the architecturally diverse leaf and stem networks, a progressive hydraulic rule has been found: the limited flows in the selected parts of the network structures against a total fail. For a scientific explanation on nanoscale water flow dynamics occurring in plants, temporal meniscus development in the nanomembrane model system is investigated. The pressure-driven hydrodynamic transport phenomena can be explained to follow network dynamics of the modified imbibition typically occuring in nanostrutcures. This study contributes to a variety of design technologies of networked materials against the spread of flow damages under the stressed conditions.

References
Carreras BA, Lynch VE, Dobson I, Newman DE. Critical points and transitions in an electric power transmission model for cascading failure blackouts. Chaos 2002; 12(4): 985–984. doi:10.1063/1.1505810.
Motter AE. Cascade control and defense in complex networks. Physical Review Letters 2004; 93(9): 098701. doi: 10.1103/PhysRevLett.93.098701.
Cornelius SP, Lee JS, Motter AE. Dispensability of Escherichia coli’s latent pathways. Proceedings of the National Academy of Sciences 2011; 108(8): 3124–3129. doi: 10.1073/pnas.1009772108.
Sahasrabudhe S, Motter AE. Rescuing ecosystems from extinction cascades through compensatory perturbations. Nature Communications 2011; 2(1): 170. doi: 10.1038/ncomms1163.
Buldyrev SV, Parshani R, Paul G, et al. Catastrophic cascade of failures in interdependent networks. Nature 2010; 464(7291): 1025–1028. doi: 10.1038/nature08932.
Leicht EA, D'Souza RM. Percolation on interacting networks. arXiv 2009; arXiv:0907.0894. doi: 10.48550/arXiv.0907.0894.
Carreras BA, Newman DE, Dobson I, Poole AB. Evidence for selforganized criticality in a time series of electric power system blackouts. IEEE Transactions on Circuits and Systems I: Regular Papers 2004; 51(9): 1733–1740. doi: 10.1109/TCSI.2004.834513.
Helbing D. Traffic and related self-driven many-particle systems. Reviews of Modern Physics 2001; 73(4): 1067. doi: 10.1103/RevModPhys.73.1067.
Vespignani A. Predicting the behavior of techno-social systems. Science 2009; 325(5939): 425–428. doi: 10.1126/science.1171990.
Pace ML, Cole JJ, Carpenter SR, et al. Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution 1999; 14(12): 483–488. doi: 10.1016/S0169-5347(99)01723-1.
Scheffer M, Carpenter S, Foley JA, et al. Catastrophic shifts in ecosystems. Nature 2001; 413(6856): 591–596. doi: 10.1038/35098000
Motter AE. Improved network performance via antagonism: From synthetic rescues to multi-drug combinations. Bioessays 2010; 32(3): 236–245. doi: 10.1002/bies.200900128.
Barabási AL, Gulbahce N, Loscalzo J. Network medicine: A network based approach to human disease. Nature Reviews Genetics 2011; 12(1): 56–68. doi: 10.1038/nrg2918.
Dosenbach NUF, Fair DA, Miezin FM, et al. Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences 2007; 104(26): 11073–11078. doi: 10.1073/pnas.0704320104.
Vidal M, Cusick ME, Barabási AL. Interactome networks and human disease. Cell 2011; 144(6): 986–998. doi: 10.1016/j.cell.2011.02.016.
Pastor-Satorras R, Vázquez A, Vespignani A. Dynamical and correlation properties of the Internet. Physical Review Letters 2001; 87(25): 258701. doi: 10.1103/PhysRevLett.87.258701.
Gallos LK, Song C, Makse HA. Scaling of degree correlations and its influence on diffusion in scale-free networks. Physical Review Letters 2008; 100(24): 248701. doi: 10.1103/PhysRevLett.100.248701.
Radicchi F. Driving interconnected networks to supercriticality. Physical Review X 2014; 4(2): 021014. doi: 10.1103/PhysRevX.4.021014.
Cornelius SP, Kath WL, Motter AE. Realistic control of network dynamics. Nature Communications 2013; 4(1): 1942. doi: 10.1038/ncomms2939.
Motter AE, Gulbahce N, Almaas E, Barabási AL. Predicting synthetic rescues in metabolic networks. Molecular Systems Biology 2008; 4(1): 168. doi: 10.1038/msb.2008.1.
Dobson I, McCalley J, Liu CC. Fast simulation, monitoring, and mitigation of cascading failure. Tempe: Power Systems Engineering Research Center (PSERC) Publication; 2010.
Anghel M, Werley KA, Motter AE. Stochastic model for power grid dynamics. In: Proceedings of the 40th International Conference on System Sciences (HICSS’07); 2007 Jan 3–6; Waikoloa, HI, USA. IEEE; 2007. p. 113.
Tyree MT, Ewers FW. The hydraulic architecture of trees and other woody plants. New Phytologist 1991; 119(3): 345–360. doi: 10.1111/j.1469-8137.1991.tb00035.x.
Wheeler TD, Stroock AD. The transpiration of water at negative pressures in a synthetic tree. Nature 2008; 455(7210): 208–212. doi: 10.1038/nature07226.
Da Silva VR. Hydraulic conductivity. London: IntechOpen; 2013.
Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Biology 1989; 40: 19–38. doi: 10.1146/annurev.pp.40.060189.000315.
Zimmermann MH. The hydraulic architecture of plants. In: Xylem structure and the ascent of sap. New York: Springer-Verlag; 1983. p. 66–82.
Tyree MT, Ewers FW. The hydraulic architecture of trees and other woody plants. New Phytologist 1991; 119(3): 345–360. doi: 10.1111/j.1469-8137.1991.tb00035.x.
Zimmermann MH, Brown CL. Trees: Structure and cunction. New York: Springer-Verlag; 1971.
Hacke U, Sauter JJ. Drought-induced xylem dysfunction in petioles, branches and roots of Populus balsamifera and Alnus glutinosa (L.) Gaertn. Plant Physiology 1996; 111(2): 413–417. doi: 10.1104/pp.111.2.413.
Brodersen CR, McElrone AJ, Choat B, et al. In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiology 2013; 161(4): 1820–1829. doi: 10.1104/pp.112.212712.
Tyree MT, Sperry JS. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress?: Answers from a model. Plant Physiology 1988; 88(3): 574–580. doi: 10.1104/pp.88.3.574.
Pittermann J, Choat B, Jansen S, et al. The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: The evolution of pitMembrane form and function. Plant Physiology 2010; 153(4): 1919–1931. doi: 10.1104/pp.110.158824.
Pockman WT, Sperry JS, O'Leary JW. Sustained and significant negative water-pressure in xylem. Nature 1995; 378(6558): 715–716. doi: 10.1038/378715a0.
Brodersen CR, McElrone AJ, Choat B, et al. The dynamics of embolism repair in xylem: In vivo visualizations using high resolution computed tomography. Plant Physiology 2010; 154(3): 1088–1095. doi: 10.1104/pp.110.162396.
Martorell S, Diaz-Espejo A, Medrano H, et al. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: Linkages between stem hydraulics and leaf gas exchange. Plant, Cell & Environment 2014; 37(3): 617–626. doi: 10.1111/pce.12182.
Wheeler JK, Huggett BA, Tofte AN, et al. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell & Environment 2013; 36(11): 1938–1949. doi: 10.1111/pce.12139.
Zwieniecki MA, Melcher PJ, Ahrens ET. Analysis of spatial and temporal dynamics of xylem refilling in Acer rubrum L. using magnetic resonance imaging. Frontiers in Plant Science 2013; 4: 265. doi: 10.3389/fpls.2013.00265.
Steudle E, Peterson CA. How does water get through roots? Journal of Experimental Botany 1998; 49(322): 775–788. doi: 10.1093/jxb/49.322.775.
Ewers FW, Carlton MR, Fisher JB, et al. Vessel diameters in roots versus stems of tropical lianas and other growth forms. IAWA Journal 1997; 18(3): 261–279.
Sperry JS, Love DM. What plant hydraulics can tell us about responses to climate-change droughts. New Phytologist 2015; 207(1): 14–27. doi: 10.1111/nph.13354.
Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society B: Biological Sciences 2009; 276(1663): 1771–1776. doi: 10.1098/rspb.2008.1919.
Brodribb TJ, Feild TS. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters 2010; 13(2): 175–183. doi: 10.1111/j.1461-0248.2009.01410.x.
Choat B, Brodersen CR, McElrone AJ. Synchrotron X-ray microtomography of xylem embolism in Sequoia sempervirens saplings during cycles of drought and recovery. New Phytologist 2015; 205(3): 1095–1105. doi: 10.1111/nph.13110.
Hochberg U, Albuquerque C, Rachmilevitch S, et al. Grapevine petioles are more sensitive to drought induced embolism than stems: Evidence from in vivo MRI and microcomputed tomography observations of hydraulic vulnerability segmentation. Plant, Cell & Environment 2016; 39(9): 1886–1894. doi: 10.1111/pce.12688.
Ahn S, Jung SY, Lee JP, et al. Gold nanoparticle flow sensors designed for dynamic X-ray imaging in biofluids. ACS Nano 2010; 4(7): 3753–3762. doi: 10.1021/nn1003293.
Park J, Kim HK, Ryu J, et al. Functional water flow pathways and hydraulic regulation in the xylem network of Arabidopsis. Plant and Cell Physiology 2015; 56(3): 520–531. doi: 10.1093/pcp/pcu198.
Ryu J, Ahn S, Kim SG, et al. Interactive ion-mediated sap flow regulation in olive and laurel stems: Physicochemical characteristics of water transport via the pit structure. PLoS One 2014; 9(5): e98484. doi: 10.1371/journal.pone.0098484.
Hwang BG, Ahn S, Lee SJ. Use of gold nanoparticles to detect water uptake in vascular plants. PLoS One 2014; 9(12): e114902. doi: 10.1371/journal.pone.0114902.
Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics. Physics Reports 2006; 424(4–5): 175–308. doi: 10.1016/j.physrep.2005.10.009.
Case DJ, Liu Y, Kiss IZ, et al. Braess’s paradox and programmable behaviour in microfluidic networks. Nature 2019; 574(7780): 647–652. doi: 10.1038/s41586-019-1701-6.
Albert R, Albert I, Nakarado GL. Structural vulnerability of the North American power grid. Physical Review E 2004; 69(2): 025103. doi: 10.1103/PhysRevE.69.025103.
Cohen R, Erez K, ben-Avraham D, Havlin S. Resilience of the internet to random breakdowns. Physical Review Letters 2000; 85(21): 4626–4628. doi: 10.1103/PhysRevLett.85.4626.
Zwieniecki MA, Melcher PJ, Feild TS, Holbrook NM. A potential role for xylem–phloem interactions in the hydraulic architecture of trees: Effects of phloem girdling on xylem hydraulic conductance. Tree Physiology 2004; 24(8): 911–917. doi: 10.1093/treephys/24.8.911.
Esau K. Anatomy of seed plants. 2nd ed. New York: John Wiley & Sons; 1977.
Hickey LJ. Classification of architecture of dicotyledonous leaves. American Journal of Botany 1973; 60(1): 17–33. doi: 10.2307/2441319.
Plymale EL, Wylie RB. The major veins of mesomorphic leaves. American Journal of Botany 1944; 31(2): 99–106. doi: 10.2307/2437600.
Coomes DA, Heathcote S, Godfrey ER, et al. Scaling of xylem vessels and veins within the leaves of oak species. Biology Letters 2008; 4(3): 302–306. doi: 10.1098/rsbl.2008.0094.
Sack L, Scoffoni C, McKown AD, et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications 2012; 3(1): 837. doi: 10.1038/ncomms1835.
McKown AD, Cochard H, Sack L. Decoding leaf hydraulics with a spatially explicit model: Principles of venation architecture and implications for its evolution. The American Naturalist 2010; 175(4): 447–460. doi: 10.1086/650721.
Transport of water and solutes in plants. Available from: https://courses.lumenlearning.com/boundless-biology/chapter/transport-of-water-and-solutes-in-plants/.
van Oss CJ. Interfacial forces in aqueous media. 2nd ed. New York: CRC Press; 2006.
Lee SJ, Kim K, Ahn S. The internal structure of macroporous membranes and transport of surface-modified nanoparticles. Microscopy and Microanalysis 2015; 21(4): 936–945. doi: 10.1017/S1431927615013719.
Gruener S, Huber P. Imbibition in mesoporous silica: Rheological concepts and experiments on water and a liquid crystal. Journal of Physics: Condensed Matter 2011; 23(18): 184109. doi: 10.1088/0953-8984/23/18/184109.
Gruener S, Sadjadi Z, Hermes HE, et al. Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores. Proceedings of the National Academy of Sciences 2012; 109(26): 10245–10250. doi: 10.1073/pnas.1119352109.
Li K, Horne RN. Generalized scaling approach for spontaneous imbibition: An analytical model. SPE Reservoir Evaluation & Engineering 2006; 9(3): 251–258. doi: 10.2118/77544-PA.
Supple S, Quirke N. Rapid imbibition of fluids in carbon nanotubes. Physical Review Letters 2003; 90(21): 214501. doi: 10.1103/PhysRevLett.90.214501.
Soriano J, Mercier A, Planet R, et al. Anomalous roughening of viscous fluid fronts in spontaneous imbibition. Physical Review Letters 2005; 95(10): 104501. doi: 10.1103/PhysRevLett.95.104501.
de Gennes PG, Brochard-Wyart F, Quere D. Hydrodynamics of interfaces: Thin films, waves, and ripples. In: Capillarity and wetting phenomena: Drops, bubbles, pearls, waves. New York: Springer; 2004.
Quéré D. Inertial capillarity. Europhysics Letters 1997; 39(5): 533–538. doi: 10.1209/epl/i1997-00389-2.
Huber P. Soft matter in hard confinement: Phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. Journal of Physics: Condensed Matter 2015; 27(10): 103102. doi: 10.1088/0953-8984/27/10/103102.
Miranda AM, Menezes-Sobrinho IL, Couto MS. Spontaneous imbibition experiment in newspaper sheets. Physical Review Letters 2010; 104(8): 086101. doi: 10.1103/PhysRevLett.104.086101.
Li K, Horne RN. Computation of capillary pressure and global mobility from spontaneous water imbibition into oil-saturated rock. SPE Journal 2005; 10(4): 458–465. doi: 10.2118/80553-PA.
Washburn EW. The dynamics of capillary flow. Physical Review 1921; 17(3): 273–283. doi: 10.1103/PhysRev.17.273.
Lucas R. On the time law of the capillary rise of liquids. Kolloid-Zeitschrift 1918; 23(1): 15.
Xue Y, Markmann J, Duan H, et al. Switchable imbibition in nanoporous gold. Nature Communications 2014; 5(1): 4237. doi: 10.1038/ncomms5237.
Li K, Zhang D, Bian H, et al. Criteria for applying the Lucas-Washburn law. Scientific Reports 2015; 5(1): 14085. doi: 10.1038/srep14085.
Bernabé Y, Li M, Maineult A. Permeability and pore connectivity: A new model based on network simulations. Journal of Geophysical Research: Solid Earth 2010; 115: B10203. doi: 10.1029/2010JB007444
Bear J. Dynamics of fluids in porous media. Elsevier; 1972.
Bonner J. Water Transport: This classical problem in plant physiology is becoming increasingly amenable to mathematical analysis. Science 1959; 129: 447–450.
Kim ME, Jeoung DJ, Kim KS. Effects of water flow on dental hard tissue ablation using Er:YAG laser. Journal of Clinical Laser Medicine & Surgery 2003; 21(3): 139–144. doi: 10.1089/104454703321895581.
Szafer A, Zhong J, Gore JC. Theoretical model for water diffusion in tissues. Magnetic Resonance in Medicine 1995; 33(5): 697–712. doi: 10.1002/mrm.1910330516.
Available from: http://www.knrrc.or.kr/ (accessed 2023 May 1).
© 2025 by the EnPress Publisher, LLC. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Copyright © by EnPress Publisher. All rights reserved.

TOP