Alothman ZA, Badjah AY, Alharbi OML, et al. Copper carboxymethyl cellulose nanoparticles for efficient removal of tetracycline antibiotics in water. Environmental Science and Pollution Research 2020; 27: 42960–42968. doi: 10.1007/s11356-020-10189-1.
Min H, Kan JE. Engineered biochar from agricultural waste for removal of tetracycline in water. Bioresource Technology 2019; 284: 437–447. doi: 10.1016/j.biortech.2019.03.131.
Nguyen VT, Nguyen TB, Chen CW, et al. Cobalt-impregnated biochar (Co-SCG) for heterogeneous activation of peroxymonosulfate for removal of tetracycline in water. Bioresource Technology 2019; 292: 121954. doi: 10.1016/j.biortech.2019.121954.
Rizzi V, Lacalamita D, Gubitosa J, et al. Removal of tetracycline from polluted water by chitosan-olive pomace adsorbing films. Science of The Total Environment 2019; 693: 133620. doi: 10.1016/j.scitotenv.2019.133620.
Sun H, Shi X, Mao J, et al. Tetracycline sorption to coil and soil of humic acid: An examination of humic structural heterogeneity. Environmental Toxicology and Chemistry 2010; 29(9): 1934–1942. doi: 10.1002/etc.248.
Vu TH, Ngo TMV, Duong TTA, et al. Removal of tetracycline from aqueous solution using nanocomposite based on polyanion-modified laterite material. Journal of Analytical Methods in Chemistry 2020; 2020: 6623511. doi: 10.1155/2020/6623511.
Hattori K, Abe E, Yoshida T, et al. New solvents for cellulose. II. ethylenediamine/thiocyanate salt system. Polymer Journal 2004; 36: 123–130. doi: 10.1295/polymj.36.123.
Rachtanapun P. Blended films of carboxymethyl cellulose from papaya peel (CMCp) and corn starch. Kasetsart Journal–Natural Science 2009; 43(5): 259–266.
Tijsen CJ, Kolk HJ, Stamhuis EJ, et al. An experimental study on the carboxymethylation of granular potato starch in non-aqueous media. Carbohydrate Polymers 2001; 45(3): 219–226. doi: 10.1016/S0144-8617(00)00243-5.
Singh RK, Singh AK. Optimization of reaction conditions for preparing carboxymethyl cellulose from corn cobic agricultural waste. Waste and Biomass Valorization 2013; 4: 129–137. doi: 10.1007/s12649-012-9123-9.
Bono A, Ying PH, Yan FY, et al. Synthesis and characterization of carboxymethyl cellulose from palm kernel cake. Advances in Natural and Applied Sciences 2009; 3(1): 5–11.
Youssef AM, Assem FM, El-Sayed HS, et al. Synthesis and evaluation of eco-friendly carboxymethyl cellulose/polyvinyl alcohol/CuO bionanocomposites and their use in coating processed cheese. RSC Advances 2020; 10: 37857–37870. doi: 10.1039/D0RA07898K.
Awwad AM, Albiss BA, Salem NM. Antibacterial activity of synthesized copper oxide nanoparticles using Malva sylvestris leaf extract. SMU Medical Journal 2015; 2(1): 91–101.
Yadollahi M, Gholamali I, Namazi H, et al. Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. International Journal of Biological Macromolecules 2015; 73: 109–114. doi: 10.1016/j.ijbiomac.2014.10.063.
Basta AH, Lotfy VF, Eldewany C. Comparison of copper-crosslinked carboxymethyl cellulose versus biopolymer-based hydrogels for controlled release of fertilizer. Polymer-Plastics Technology and Materials 2021; 60(17): 1884–1897. doi: 10.1080/25740881.2021.
Chen W-R, Huang C-H. Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere 2010; 79(8): 779–785. doi: 10.1016/j.chemosphere.2010.03.020.
Parolo ME, Savini MC, Vallés JM, et al. Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Applied Clay Science 2008; 40(1–4): 179–186. doi: 10.1016/j.clay.2007.08.003.