Journal Browser
Search
Hydrothermal synthesis of valve metal Ta-doped titanate nanofibers for potentially engineering bone tissue
Parker Cole
Yang Tian
Savannah Thornburgh
Mary Malloy
Lauren Roeder
Lu Zhang
Mansi Patel
Yiting Xiao
Yan Huang
Z. Ryan Tian
Characterization and Application of Nanomaterials 2023, 6(2); https://doi.org/10.24294/can.v6i2.3606
Submitted:12 Dec 2023
Accepted:12 Jan 2024
Published:17 Jan 2024
Abstract

Recent research efforts have increasingly concentrated on creating innovative biomaterials to improve bone tissue engineering techniques. Among these, hybrid nanomaterials stand out as a promising category of biomaterials. In this study, we present a straightforward, cost-efficient, and optimized hydrothermal synthesis method to produce high-purity Ta-doped potassium titanate nanofibers. Morphological characterizations revealed that Ta-doping maintained the native crystal structure of potassium titanate, highlighting its exciting potential in bone tissue engineering.

References
Benedini L, Laiuppa J, Santillán G, et al. Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: Assessment of their bioactivity, biocompatibility, and antibacterial activity. Materials Science and Engineering: C 2020; 115: 11
Min Q, Liu J, Zhang Y, et al. Dual network hydrogels incorporated with bone morphogenic protein-7-loaded hyaluronic acid complex nanoparticles for inducing chondrogenic differentiation of synovium-derived mesenchymal stem cells. Pharmaceutics 2020; 12(7):
Nie L, Deng Y, Li P, et al. Hydroxyethyl chitosan-reinforced polyvinyl alcohol/biphasic calcium phosphate hydrogels for bone regeneration. ACS Omega 2020; 5(19): 10948–10957. doi: 10.1021/acsomega.0c00727
Oudadesse H, Najem S, Mosbahi S, et al. Development of hybrid scaffold: Bioactive glass nanoparticles/chitosan for tissue engineering applications. Journal of Biomedical Materials Research Part A 2020; 109(5): 590–599. doi: 10.1002/jbm.a.37043
Maji K, Dasgupta S, Bhaskar R, et al. Photo-crosslinked alginate nano-hydroxyapatite paste for bone tissue engineering. Biomedical Materials 2020; 15(5): 055019. doi: 10.1088/1748-605x/ab9551
Wu T, Li B, Wang W, et al. Strontium-substituted hydroxyapatite grown on graphene oxide nanosheet-reinforced chitosan scaffold to promote bone regeneration. Biomaterials Science 2020; 8(16): 4603–4615. doi: 10.1039/d0bm00523a
Zhang B, Li J, He L, et al. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration. Acta Biomaterialia 2020; 114: 431–448. doi: 10.1016/j.actbio.2020.07.024
Yang L, Gao C, Wei D, et al. Nanotechnology for treating osteoporotic vertebral fractures. International Journal of Nanomedicine 2015; 10: 5139–5157. doi: 10.2147/ijn.s85037
Saravanan S, Vimalraj S, Anuradha D. Chitosan based thermoresponsive hydrogel containing graphene oxide for bone tissue repair. Biomedicine & Pharmacotherapy 2018; 107: 908–917. doi: 10.1016/j.biopha.2018.08.072
Mohammadi M, Mousavi Shaegh SA, Alibolandi M, et al. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. Journal of Controlled Release 2018; 274: 35–55. doi: 10.1016/j.jconrel.2018.01.032
Aldaadaa A, Al Qaysi M, Georgiou G, et al. Physical properties and biocompatibility effects of doping SiO2 and TiO2 into phosphate-based glass for bone tissue engineering. Journal of Biomaterials Applications 2018; 33(2): 271–280. doi: 10.1177/08853282187
Hashemi A, Ezati M, Mohammadnejad J, et al. Chitosan coating of TiO2 nanotube arrays for improved metformin release and osteoblast differentiation. International Journal of Nanomedicine 2020; 15: 4471–4481. doi: 10.2147/ijn.s248927
Liang F, Zhou L, Wang K. Apatite formation on porous titanium by alkali and heat-treatment. Surface and Coatings Technology 2003; 165(2): 133–139. doi: 10.1016/s0257-8972(02)00735-1
Frandsen CJ, Brammer KS, Noh K, et al. Tantalum coating on TiO2 nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts. Materials Science and Engineering: C 2014; 37: 332–341. doi: 10.1016/j.msec.2014.01.014
Dong W, Cogbill A, Zhang T, et al. Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices. The Journal of Physical Chemistry B 2006; 110(34): 16819–16822. doi: 10.1021/jp0637633
Dong W, Zhang T, Epstein J, et al. Multifunctional nanowire bioscaffolds on titanium. Chemistry of Materials 2007; 19(18): 4454–4459. doi: 10.1021/cm070845a
Hwang C, Park S, Kang IG, et al. Tantalum-coated polylactic acid fibrous membranes for guided bone regeneration. Materials Science and Engineering: C 2020; 115: 111112. doi: 10.1016/j.msec.2020.111112
Marins NH, Lee BEJ, e Silva RM, et al. Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering. Colloids and Surfaces B: Biointerfaces 2019; 182: 110386. doi: 10.1016/j.colsurfb.2019.
Zhang J, Huang D, Liu S, et al. Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. Materials Science and Engineering: C 2019; 105: 110054. doi: 10.1016/j.msec.2019.110054
Inui T, Haneda S, Sasaki M, et al. Enhanced chondrogenic differentiation of equine bone marrow-derived mesenchymal stem cells in zirconia microwell substrata. Research in Veterinary Science 2019; 125: 345–350. doi: 10.1016/j.rvsc.2019.07.005
Cole P, Tian Y, Thornburgh S, et al. Hydrothermal synthesis of valve metal Zr-doped titanate nanofibers for bone tissue engineering. Nano and Medical Materials 2023; 3(2): 249. doi: 10.59400/nmm.v3i2.249
Xiao Y, Tian Y, Zhan Y, Zhu J. Degradation of organic pollutants in flocculated liquid digestate using photocatalytic titanate nanofibers: Mechanism and response surface optimization. Frontiers of Agricultural Science and Engineering 2023. doi: 10.15302/j
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 1976; 32(5): 751–767. doi: 10.1107/s0567739476001551
Yuan ZY, Zhang XB, Su BL. Moderate hydrothermal synthesis of potassium titanate nanowires. Applied Physics A 2004; 78(7): 1063–1066. doi: 10.1007/s00339-003-2165-x
Wu Z, Yoshimura M. The formation of pyrochlore potassium tantalate thin films by soft solution processing. Thin Solid Films 2000; 375(1–2): 46–50. doi: 10.1016/s0040-6090(00)01178-0
Alizadeh A, Moztarzadeh F, Ostad SN, et al. Synthesis of calcium phosphate-zirconia scaffold and human endometrial adult stem cells for bone tissue engineering. Artificial Cells, Nanomedicine, and Biotechnology 2014; 44(1): 66–73. doi: 10.3109/21691401.20
Jin S, Yu J, Zheng Y, et al. Preparation and characterization of electrospun PAN/PSA carbonized nanofibers: Experiment and simulation study. Nanomaterials 2018; 8(10): 821. doi: 10.3390/nano8100821
Wang X, Liu SJ, Qi YM, et al. Behavior of potassium titanate whisker in simulated body fluid. Materials Letters 2014; 135: 139–142. doi: 10.1016/j.matlet.2014.07.145
Kokubo T, Yamaguchi S. Novel bioactive titanate layers formed on Ti metal and its alloys by chemical treatments. Materials 2009; 3(1): 48–63. doi: 10.3390/ma3010048
© 2025 by the EnPress Publisher, LLC. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Copyright © by EnPress Publisher. All rights reserved.

TOP