Andersen, M. K. (2017). Human capital analytics: The winding road. Journal of Organizational Effectiveness: People and Performance, 4(2), 133–136. https://doi.org/10.1108/JOEPP-03-2017-0024
Angrave, D., Charlwood, A., Kirkpatrick, I., et al. (2016). HR and analytics: Why HR are set to fail the big data challenge. Human Resource Management Journal, 26(1), 1–11. https://doi.org/10.1111/1748-8583.12090
Anoopa, N. (2016). Talent management and employee retention: Implications of job embeddedness. Journal of Strategic Human Resource Management, 5(2), 34–40.
Beattie, V., Smith, S. J. (2013). Value creation and business models: Refocusing the intellectual capital debate. The British Accounting Review, 45, 243–254. https://doi.org/10.1016/j.bar.2013.06.001
Berhil, S., Benlahmar, H., Labani, N. (2020). A review paper on artificial intelligence at the service of human resources management. Indonesian Journal of Electrical Engineering and Computer Science, 18(1), 32–40. https://doi.org/10.11591/ijeecs.v18.i1.p
Bersin, J. (2016). Is software better at managing people than you are? Fortune magazine.
Bersin, L., Wang, A. (2013). High-impact talent analytics: Building a world-class HR measurement and analytics function. Bersin by Deloitte.
Bhuva, K., Srivastava, K. (2018). Comparative study of the machine learning techniques for predicting the employee attrition. IJRAR-International Journal of Research and Analytical Reviews (IJRAR), 568–577.
Bulsari, S., Pandya, K. (2023). Future of HR analytics: Applications to recruitment, employee engagement, and retention. In: Managing Technology Integration for Human Resources in Industry 5.0. IGI Global. pp. 140–162.
Carvalho, A., Riana, I. G., Soares, A. (2020). Motivation on job satisfaction and employee performance. International Research Journal of Management, IT & Social Sciences, 7(5), 13–23. https://doi.org/10.25105/ber.v20i2.8006
Chalutz Ben-Gal, H. (2019). An ROI-based review of HR analytics: practical implementation tools. Personnel Review, 48(6), 1429–1448. https://doi.org/10.1108/PR-11-2017-0362
Chatterjee, S., Chaudhuri, R., Vrontis, D., et al. (2022). Examining the dark side of human resource analytics: An empirical investigation using the privacy calculus approach. International Journal of Manpower, 43(1), 52–74. https://doi.org/10.1108/IJM-02
Davenport, T. H., Harris, J., Shapiro, J. (2010). Competing on talent analytics. Available online: https://hbr.org/2010/10/competing-on-talent-analytics (accessed on 21 January 2024).
Dulebohn, J. H., Johnson, R. D. (2013). Human resource metrics and decision support: A classification framework. Human Resource Management Review, 23(1), 71–83. https://doi.org/10.1016/j.hrmr.2012.06.005
Edwards, M. R., Charlwood, A., Guenole, N., et al. (2022). HR analytics: An emerging field finding its place in the world alongside simmering ethical challenges. Human Resource Management Journal, 34(2), 326–336. https://doi.org/10.1111/1748-8583.12435
Fernandez, V., Gallardo-Gallardo, E. (2020). Tackling the HR digitalization challenge: Key factors and barriers to HR analytics adoption. competitiveness review. An International Business Journal, 31(1), 162–187. https://doi.org/10.1108/cr-12-2019-0163
Fred, M. O., Kinange, U. M. (2015). Overview of HR analytics to maximize human capital investment. International Journal of Advance Research and Innovative Ideas in Education, 1(4), 118–122.
Ghasemaghaei, M., Ebrahimi, S., Hassanein, K. (2018). Data analytics competency for improving firm decision making performance. The Journal of Strategic Information Systems, 27(1), 101–113. https://doi.org/10.1016/j.jsis.2017.10.001
Ghazi, A. H., Elsayed, S. I., Khedr, A. E. (2021). A proposed model for predicting employee turnover of information technology specialists using data mining techniques. International Journal of Electrical and Computer Engineering Systems, 12(2), 113–121.
Haar, J. M., White, B. J. (2013). Corporate entrepreneurship and information technology towards employee retention: A study of New Zealand firms. Human Resource Management Journal, 23(1), 109–125. https://doi.org/10.1111/j.1748-8583.2011.00178.x
Handa, D., Garima, A. (2014). Human resources (HR) analytics: Emerging trends in HRM. International Journal of Research in Commerce & Management, 5(6), 59–62.
Holtbrugge, D., Friedmann, C. B., Puck, J. F. H. (2010). Recruitment and retention in foreign firms in India: A resource-based view. Human Resource Management, 49(3), 439–455. https://doi.org/10.1002/hrm.20353
Hughes, J. C., Rog, E. (2008). Talent management: A strategy for improving employee recruitment, retention and engagement within hospitality organizations. International Journal of Contemporary Hospitality Management, 20(7), 743–757. https://doi.org/10.11
Ikey. (2023). The types of HR analytics. Available online: https://medium.com/@micky.ikeh/the-types-of-hr-analytics-and-how-they-accelerate-business-growth-a8f57de68206 (accessed on 21 January 2024).
Jabir, B., Falih, N., Rahmani, K. (2019). HR analytics a roadmap for decision making: Case study. Indonesian Journal of Electrical Engineering and Computer Science, 15(2), 979–990. https://doi.org/10.11591/ijeecs.v15.i2.pp979-990
Jose, S. (2019). Innovation in recruitment and talent acquisition: A study on technologies and strategies adopted for talent management in IT sector. International Journal of Marketing and Human Resource Management, 10(2), 1–8. https://doi.org/10.34218/ij
Jugulum, R. (2016). Importance of data quality for analytics. In: Sampaio, P., & Saraiva, P. (editors). Quality in the 21st Century: Perspectives from ASQ Feigenbaum Medal Winners. Springer. pp. 23–31.
Kapoor, B., Kabra, Y. (2014). Current and future trends in human resources analytics adoption. Journal of Cases on Information Technology, 16(1), 50–59. https://doi.org/10.4018/jcit.2014010105
Latif, N. A. (2022). Designing strategies for reducing employee turnover: Human resource analytics application. International Journal of Advanced Research in Technology and Innovation, 4(3), 31–35.
LaValle, S., Lesser, E., Shockley, R. (2011). Big data, analytics, and path from insights to value. MIT Sloan Management Review, 34–41.
Lee, J. Y., Lee, Y. (2024). Integrative literature review on people analytics and implications from the perspective of human resource development. Human Resource Development Review, 23(1), 58–87. https://doi.org/10.1177/15344843231217181
Lévy-Garboua, L., Montmarquette, C., Simonnet, V. (2007). Job satisfaction and quits. Labour Economics, 14(2), 251–268. https://doi.org/10.1016/j.labeco.2005.08.003
Margherita, A. (2022). Human resources analytics: A systematization of research topics and directions for future research. Human Resource Management Review, 32(2), 100795. https://doi.org/10.1016/j.hrmr.2020.100795
Marler, J. H., Boudreau, J. W. (2016). An evidence-based review of HR Analytics. The International Journal of Human Resource Management, 28(1), 3–26. https://doi.org/10.1080/09585192.2016.1244699
Mondare, S., Douthitt, S., Carson, M. (2011). Maximizing the impact and effectiveness of HR analytics to drive business outcomes. People and Strategy, 34(2), 20–27.
Muhammad, G., Naz, F. (2022). A moderating role of HR analytics between employee engagement, retention, and organizational performance. International Journal of Business Environment, 13(4), 345–357. https://doi.org/10.1504/ijbe.2022.126370
Necula, S. C., Strîmbei, C. (2019). People analytics of semantic web human resource résumés for sustainable talent acquisition. Sustainability (Switzerland), 11(13), 3520. https://doi.org/10.3390/su11133520
Opatha, H. H. D. P. J. (2020). HR analytics: A literature review and new conceptual model. International Journal of Scientific and Research Publications (IJSRP), 10(06), 130–141. https://doi.org/10.29322/ijsrp.10.06.2020.p10217
Ortlieb, R., Sieben, B. (2012). How to safeguard critical resources of professional and managerial staff: Exploration of a taxonomy of resource retention strategies. The International Journal of Human Resource Management, 23(8), 1688–1704. https://doi.org
Ponnuru, S. R. (2020). Employee attrition prediction using logistic regression. International Journal for Research in Applied Science and Engineering Technology, 8(5), 2871–2875. https://doi.org/10.22214/ijraset.2020.5481
Qamar, Y., Samad, T. A. (2022): Human resource analytics: A review and bibliometric analysis. Personnel Review, 51(1), 251–283. https://doi.org/10.1108/pr-04-2020-0247
Setiawan, I., Suprihanto, S., Nugraha, A. C., et al. (2020). HR analytics: Employee attrition analysis using logistic regression. IOP Conference Series: Materials Science and Engineering, 830(3), 032001. https://doi.org/10.1088/1757-899x/830/3/032001
Shet S. V., Poddar, T., Wamba Samuel, F., et al. (2021). Examining the determinants of successful adoption of data analytics in human resource management—A framework for implications. Journal of Business Research, 131, 311–326. https://doi.org/10.1016/j.j
Vrontis, D., Christofi, M., Pereira, V., et al. (2021). Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. The International Journal of Human Resource Management, 33(6), 1237–1266. https://doi.org/
Zhao, Y., Hryniewicki, M. K., Cheng, F. (2019). Employee turnover prediction with machine learning: A reliable approach. Springer Nature Switzerland AG, 737–758.
Zhao, G., Carlton, D. (2015). Forecast competency migration by a methodology of competency analytics. Open Journal of Social Sciences, 3(11), 16–22. https://doi.org/10.4236/jss.2015.311003