This paper uses quantitative research methods to explore the differences in the impact of virtual influencers on different consumer groups in the context of technological integration and innovation. The study uses DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering technology to segment consumers and combines social media behavior analysis with purchase records to collect data to identify differences in consumer behavior under the influence of virtual influencers. Consumers' emotional resonance and brand awareness information about virtual influencers are extracted through sentiment analysis technology. The study finds that there are significant differences in the influence of virtual influencers on different consumer groups, especially in high-potential purchase groups, where the influence of virtual influencers is strong but short-lived. This paper further explores the deep integration of virtual influencer technology with new generation information technologies such as 5G and artificial intelligence, and emphasizes the importance of such technological integration in enhancing the endogenous and empowering capabilities of virtual influencers. The research results show that technological integration and innovation can not only promote the development of virtual influencers, but also provide new technical support for infrastructure construction, especially in the fields of smart cities and industrial production. This paper provides a new theoretical perspective for the market application of virtual influencers and provides practical support for the application of virtual technology in infrastructure construction.
This study employed a deductive approach to examine external HRM factors influencing job satisfaction in the post-pandemic hybrid work environment. Explores the intermediary functions of age, gender, and work experience in this particular environment. The data-gathering procedure consisted of conducting semi-structured interviews with carefully chosen 50 managers representing various sectors, industries, organizations, and professions. The applied approach was adopted to allow a systematic and unbiased investigation of the mediating variables. The study used SPSS 25 and Smart PLS 4 to analyze the model, enhancing understanding of HRM challenges in a constantly evolving workplace. The findings offer valuable insights for HR experts and businesses, highlighting the value of comprehending what methods HRM components influence job satisfaction to optimize employee well-being and productivity. The study provides applied recommendations designed for enhancing employee contentment in the AI-evolving professional atmosphere, shedding light on the importance of supportive leadership strategies, particularly during AI-triggered downsizing. Additionally, we welcome a new era to push forward in integrating and managing AI tools and technologies to automate decision-making and data processing. Results propose that Exogenous influences of human resource management (HRM) influence manager job satisfaction considerably. Specifically, downsizing caused by AI was found to have negative consequences, whereas diversity and restructuring have favorable effects. Gender was recognized as a crucial factor that influences outcomes, then age and years of experience have the most visible effect.
Copyright © by EnPress Publisher. All rights reserved.