Given the increasing demand for sustainable energy sources and the challenges associated with the limited efficiency of solar cells, this review focuses on the application of gold quantum dots (AuQDs) in enhancing solar cell performance. Gold quantum dots, with their unique properties such as the ability to absorb ultraviolet light and convert it into visible light expand the utilization of the solar spectrum in solar cells. Additionally, these quantum dots, through plasmonic effects and the enhancement of localized electric fields, improve light absorption, charge carrier generation (electrons and holes), and their transfer. This study investigates the integration of quantum dots with gold plasmonic nanoparticles into the structure of solar cells. Experimental results demonstrate that using green quantum dots and gold plasmonic nanoparticles as intermediate layers leads to an increase in power conversion efficiency. This improvement highlights the significant impact of this technology on solar cell performance. Furthermore, the reduction in charge transfer resistance and the increase in short-circuit current are additional advantages of utilizing this technology. The findings of this research emphasize the high potential of gold quantum dots in advancing next-generation solar cell technology.
The study intends to identify the existing implementation bottlenecks that hamper the effectiveness of the Ethiopian forest policy and laws in regional states by focusing on the Oromia Regional State. It attempts to address the question, “What are the challenges for the effective implementation of the federal forest policy and law in Ethiopia in general and Oromia Regional State in particular?”. The study followed a qualitative research approach, and the relevant data was collected through in-depth interviews from 11 leaders and experts of the policy, who were purposively selected. Furthermore, relevant documents such as the constitutions, forest policies and laws, and government documents were carefully reviewed. Based on this, the study found that there is the dichotomy between the provision of the constitution regarding the forest policy and lawmaking and the constitutional amendment on one hand and the push for genuine decentralization in the Ethiopian federal state on the other. To elaborate, the constitution is rigid for amendment, and it has given the power of forest policy and lawmaking to the federal government. On the other hand, the quest for genuine decentralization requires these powers to be devolved to the regional states. As the constitution is rigid, this may continue to be the major future challenge of the forest policy and lawmaking of the state. This demonstrates a conflict of interests between the two layers of governments, i.e., the federal and regional (Oromia Regional State) governments. Respecting and practicing the constitution may be the immediate solution to this pressing problem.
Credit risk assessment is one of the most important aspects of financial decision-making processes. This study presents a systematic review of the literature on the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques in credit risk assessment, offering insights into methodologies, outcomes, and prevalent analysis techniques. Covering studies from diverse regions and countries, the review focuses on AI/ML-based credit risk assessment from consumer and corporate perspectives. Employing the PRISMA framework, Antecedents, Decisions, and Outcomes (ADO) framework and stringent inclusion criteria, the review analyses geographic focus, methodologies, results, and analytical techniques. It examines a wide array of datasets and approaches, from traditional statistical methods to advanced AI/ML and deep learning techniques, emphasizing their impact on improving lending practices and ensuring fairness for borrowers. The discussion section critically evaluates the contributions and limitations of existing research papers, providing novel insights and comprehensive coverage. This review highlights the international scope of research in this field, with contributions from various countries providing diverse perspectives. This systematic review enhances understanding of the evolving landscape of credit risk assessment and offers valuable insights into the application, challenges, and opportunities of AI and ML in this critical financial domain. By comparing findings with existing survey papers, this review identifies novel insights and contributions, making it a valuable resource for researchers, practitioners, and policymakers in the financial industry.
The increasing demand for electricity and the need to reduce carbon emissions have made optimizing energy usage and promoting sustainability critical in the modern economy. This research paper explores the design and implementation of an Intelligent-Electricity Consumption and Billing Information System (IEBCIS), focusing on its role in addressing electricity sustainability challenges. Using the Design Science Research (DSR) methodology, the system’s architecture collects, analyses, and visualizes electricity usage data, providing users with valuable insights into their consumption patterns. The research involved developing and validating the IEBCIS prototype, with results demonstrating enhanced real-time monitoring, load shedding schedules, and billing information. These results were validated through user testing and feedback, contributing to the scientific knowledge of intelligent energy management systems. The contributions of this research include the development of a framework for intelligent energy management and the integration of data-driven insights to optimize electricity consumption, reduce costs, and promote sustainable energy use. This research was conducted over a time scope of two years (24 months) and entails design, development, pilot test implementation and validation phases.
Measuring the performance of healthcare organizations has become a crucial yet challenging task, which is the focus of this study. The paper’s primary goal is to identify the key factors that shape healthcare organizations’ performance management systems in Serbia, which can serve as useful guidelines for implementing sustainable solutions. Additionally, the aim is to emphasize the importance of a broad implementation of performance measurement systems to facilitate strategy implementation and enhance organizational effectiveness. The empirical research involved an online survey of 280 respondents, including managers, executives, and operational staff from both private and public healthcare organizations in Serbia. Statistical analysis was conducted using SPSS 20. The study identifies key challenges, including the lack of a developed performance measurement system, weak support from information and management systems for performance improvement, and an organizational structure that does not support performance enhancement. Furthermore, it has been found that a deeper understanding of the essence of measurement significantly contributes to identifying problems in its application in the healthcare sector. It was also observed that the more challenges identified in the measurement process, the less favourable the perception of the flexibility and adaptability of the system.
This study aims to develop a robust prioritization model for municipal projects in the Holy Metropolitan Municipality (Makkah) to address the challenges of aligning short-term and long-term objectives. The research explores How multi-criteria decision-making (MCDM) techniques can prioritize municipal projects effectively while ensuring alignment with strategic goals and local needs. The methodology employs the analytic hierarchy process (AHP) and exploratory factor analysis (EFA) to ensure methodological rigor and data adequacy. Data were collected from key stakeholders, including municipal planners and community representatives, to enhance transparency and reliability. The model’s validity was assessed through latent factor analysis, confirming the relevance of identified criteria and factors. Results indicate that flood prevention projects are the highest priority (0.4246), followed by road projects (0.3532), park construction (0.1026), utility projects (0.0776), and digital transformation (0.0416). The study highlights that certain factors are critical for evaluating and prioritizing municipal projects. “Capacity and Demand” emerged as the most influential factor (0.5643), followed by “Strategic Alignment” (0.2013), “Project Interdependence” (0.1088), “Increasing Investment” (0.0950), and “Risk” (0.0306). These findings are significant as they offer a structured, data-driven approach to decision-making aligned with Saudi Vision 2030. The proposed model optimizes resource allocation and project selection, representing a pioneering effort to develop the first prioritization framework specifically tailored to Makkah’s unique municipal needs. Notably, this is the first study to establish a prioritization method specifically for Makkah’s municipal projects, providing valuable contributions to the field.
Copyright © by EnPress Publisher. All rights reserved.