1. Ashkani O, Abedi-Ravan B, YarAhmadi Y. Recent Advances in the Development of Quantum Materials for the
Construction of Solar Cells: A Mini Review. Journal of Environmental Friendly Materials. 2024; 8(1): 67–75.
2. Ashkani O. The Role of Graphene Quantum Dots on Solar Cell Efficiency. In: Proceedings of the Carbon Chemistry World
Conference CCWC 2024; 17–19 August 2024; Barcelona, Spain.
3. Halmann MM, Steinberg M. Greenhouse gas carbon dioxide mitigation: Science and technology. CRC press; 1998.
4. Alanne K, Saari A. Distributed energy generation and sustainable development. Renewable and Sustainable Energy Reviews.
2006; 10(6): 539–558.
5. Herzog AV, Lipman TE, Kammen DM. Renewable energy sources. In: Encyclopedia of life support systems (EOLSS).
EOLSS; 2001.
6. Panwar NL, Kaushik SC, Kothari S. Role of renewable energy sources in environmental protection: A review. Renewable
and sustainable energy reviews. 2011; 15(3): 1513–1524.
7. Thomas M. Chart: The growth of solar energy. Distilled; 2023. Source: Ember 2023 Electricity Review. Created with
Datawrapper. Available online: https://ember-energy.org/latest-insights/global-electricity-review-22023/ (accessed on 22
January 2025).
8. Woodhouse S, Meisen P. Renewable energy potential of Chile. Global Energy Network Institute; 2011.
9. Reshma VG, Mohanan PV. Quantum dots: Applications and safety consequences. Journal of Luminescence. 2019; 205: 287–
298. doi: 10.1016/j.jlumin.2018.09.015
10. Hu ZM, Fei GT, Zhang LD. Synthesis and tunable emission of Ga2S3 quantum dots. Materials Letters. 2019; 239: 17–20.
doi: 10.1016/j.matlet.2018.12.046
11. Ornes S. Core Concept: Quantum dots. Proceedings of the National Academy of Sciences of the United States of America.
2016; 113(11): 2796–2797. doi: 10.1073/pnas.1601852113
12. Munishwar SR, Pawar PP, Janbandhu SY, Gedam RS. Growth of CdSSe quantum dots in borosilicate glass by controlled
heat treatment for band gap engineering. Optical Materials. 2018; 86: 424–432. doi: 10.1016/j.optmat.2018.10.040
13. Bai J, He Z, Li L, et al. The influence of side-coupled quantum dots on thermoelectric effect of parallel-coupled double
quantum dot system. Physica B: Condensed Matter. 2018; 545: 377–382. doi: 10.1016/j.physb.2018.06.040
14. Chen F, Yao Y, Lin H, et al. Synthesis of CuInZnS quantum dots for cell labeling applications. Ceramics International. 2018;
44: S34–S37. doi: 10.1016/j.ceramint.2018.08.276
15. Gao G, Jiang YW, Sun W, Wu FG. Fluorescent quantum dots for microbial imaging. Chinese Chemical Letters. 2018;
29(10): 1475–1480. doi: 10.1016/j.cclet.2018.07.004
16. Kumar GS, Thupakula U, Sarner PK, Acharya S. Easy extraction of water-soluble graphene quantum dots for light-emitting
diodes. RSC Advances. 2015; 5: 27711–27716. doi: 10.1039/C5RA01399
17. Roushani M, Mavaei M, Rajabi HR. Graphene quantum dots as novel and green nanomaterials for the visible-light-driven
photocatalytic degradation of cationic dye. Journal of Molecular Catalysis A: Chemical. 2015; 409: 102–109. doi:
10.1016/j.molcata.2015.08.011
18. Pierobon P, Cappello G. Quantum dots to tail single biomolecules inside living cells. Advanced Drug Delivery Reviews.
2012; 64(2): 167–178. doi: 10.1016/j.addr.2011.06.004
19. Wang J, Liu C, Park W, Heo J. Band gap tuning of PbSe quantum dots by SrO addition in silicate glasses. Journal Of NonCrystalline Solids. 2016; 452: 40–44.
20. Naylor-Adamson L, Price TW, Booth Z, et al. Quantum dot imaging agents: Haematopoietic cell interactions and
biocompatibility. Cells. 2024; 13: 354. doi: 10.3390/cells13040354
21. Tulinski M, Jurczyk M. Nanomaterials synthesis methods. In: Metrology and standardization of nanotechnology: Protocols
and industrial innovations. Wiley-VCH Verlag GmbH; 2017. pp. 75–98.
22. Prasad Yadav T, Manohar Yadav R, Pratap Singh D. Mechanical milling: A top down approach for the synthesis of
nanomaterials and nanocomposites. Nanoscience and Nanotechnology. 2012; 2(3): 22–48.
23. Pimpin A, Srituravanich W. Review on micro-and nanolithography techniques and their applications. Engineering journal.
2012; 16(1): 37–56.
24. Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles.
Physical Chemistry Chemical Physics. 2009; 11(20): 3805–3821.
25. Ostermann R, Cravillon J, Weidmann C, et al. Metal–organic framework nanofibers viaelectrospinning. Chemical
Communications. 2011; 47(1): 442–444.
26. Ayyub P, Chandra R, Taneja P, et al. Synthesis of nanocrystalline material by sputtering and laser ablation at low
temperatures. Applied Physics A Materials Science & Processing. 2001; 73: 67–73.
27. Zhang D, Ye K, Yao Y, et al. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner
wall of the chamber. Carbon. 2019; 142: 278–284.
28. Lieber CM, Chen CC. Solid State Physics–Advances in Research and Applications. Academic Press; 1994. Volume 48. pp.
109–148.
29. Jones AC, Aspinall HC, Chalker PR. Chemical vapour deposition of metal oxides for microelectronics applications. In:
Chemical Vapour Deposition: Precursors, Processes and Applications. Royal Society of Chemistry; 2008.
30. Li J, Wu Q, Wu J. Handbook of Nanoparticles. Springer International Publishing; 2015.
31. Danks AE, Hall SR, Schnepp Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Materials
Horizons. 2016; 3: 91–112.
32. Liu Y, Goebl J, Yin Y. Themed issue: Chemistry of functional nanomaterials. Chemical Society Reviews. 2013; 42: 2610–
2653.
33. Malik MA, Wani MY, Hashim MA. Microemulsion method: A novel route to synthesize organic and inorganic
nanomaterials. Arabian Journal of Chemistry. 2012; 5(4): 397–417.
34. Nguyen TD. From formation mechanisms to synthetic methods toward shape-controlled oxide nanoparticles. Nanoscale.
2013; 5(20): 9455–9482.
35. Georgia Institute of Technology. Gold Quantum Dots: Fluorescing “Artificial Atoms” Could Have Applications in
Biological Labeling, Nanoscale Optoelectronics. Available online: https://phys.org/news/2004-08-gold-quantum-dotsfluorescing-artificial.html (accessed on 22 January 2025).
36. Voliani V. Gold Nanoparticles: An Introduction to Synthesis, Properties and Applications. Walter de Gruyter GmbH & Co
KG; 2020.
37. Hutter E, Maysinger D. Gold nanoparticles and quantum dots for bioimaging. Microscopy Research and Technique. 2011;
74(7): 592–604.
38. Mahmoud ZH, AL-Salman HNK, Abed Hussein S, et al. Photoresponse performance of Au (nanocluster and nanoparticle)
TiO2: Photosynthesis, characterization and mechanism studies. Results in Chemistry. 2024; 10: 101731.
39. Chang M, Wang M, Shu M, et al. Enhanced photoconversion performance of NdVO4/Au nanocrystals for
photothermal/photoacoustic imaging guided and near infrared light-triggered anticancer phototherapy. Acta Biomaterialia.
2019; 99: 295–306.
40. Patil T, Gambhir R, Vibhute A, Tiwari AP. Gold nanoparticles: synthesis methods, functionalization and biological
applications. Journal of Cluster Science. 2022; 34(2): 705–725.
41. Hammami I, Alabdallah NM, jomaa AA, kamoun M. Gold nanoparticles: Synthesis properties and applications. Journal of
King Saud University-Science. 2021; 33(7): 101560.
42. Qiao J, Qi L. Recent progress in plant-gold nanoparticles fabrication methods and bio-applications. Talanta. 2021; 223:
121396.
43. Jesús Dueñas-Mas M, Laura Soriano M, Ruiz-Palomero C, Valcárcel M. Modified nanocellulose as promising material for
the extraction of gold nanoparticles. Microchemical Journal. 2018; 138: 379–383.
44. Yazdani S, Daneshkhah A, Diwate A, et al. Model for Gold Nanoparticle Synthesis: Effect of pH and Reaction Time. ACS
Omega. 2021; 6(26): 16847–16853.
45. Pangdam A, Nootchanat S, Ishikawa R, et al. Effect of urchin-like gold nanoparticles in organic thin-film solar cells.
Physical Chemistry Chemical Physics. 2016; 18(27): 18500–18506.
46. Ng A, Yiu WK, Foo Y, et al. Enhanced Performance of PTB7: PC71BM Solar Cells via Different Morphologies of Gold
Nanoparticles. ACS Applied Materials & Interfaces. 2014; 6(23): 20676–20684.
47. Hsu CP, Lee KM, Huang JTW, et al. EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized
solar cells. Electrochimica Acta. 2008; 53(25): 7514–7522.
48. Wang Q, Moser JE, Grätzel M. Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells. The
Journal of Physical Chemistry B. 2005; 109(31): 14945–14953.
49. Phetsang S, Phengdaam A, Lertvachirapaiboon C, et al. Investigation of a gold quantum dot/plasmonic gold nanoparticle
system for improvement of organic solar cells. Nanoscale Advances. 2019; 1(2): 792–798.
50. Gholamkhass B, Holdcroft S. Enhancing the durability of polymer solar cells using gold nano-dots. Solar Energy Materials
and Solar Cells. 2011; 95(11): 3106–3113.
51. Phengdaam A, Phetsang S, Jonai S, et al. Gold nanostructures/quantum dots for the enhanced efficiency of organic solar
cells. Nanoscale Advances. 2024; 6(14): 3494–3512.
52. Liu J, Qin L, Tang M, et al. Bi-functional gold nanoparticles composites regulated by graphene quantum dots with various
surface states. Results in Chemistry. 2021; 3: 100171.
53. Indayani W, Huda I, Herliansyah, et al. Experimental study of the effect of addition of gold nanoparticles on CdSe quantum
dots sensitized solar cells. In: Proceedings of the International Conference on Engineering, Science and Nanotechnology
2016 (Icesnano 2016); 3–5 August 2016; Solo, Indonesia.
54. Kuntamung K, Yaiwong P, Lertvachirapaiboon C, et al. The effect of gold quantum dots/grating-coupled surface plasmons
in inverted organic solar cells. Royal Society Open Science. 2021; 8(3).
55. Phetsang S, Nootchanat S, Lertvachirapaiboon C, et al. Enhancement of organic solar cell performance by incorporating gold
quantum dots (AuQDs) on a plasmonic grating. Nanoscale Advances. 2020; 2(7): 2950–2957.