The multifaceted nature of the skills required by new-age professions, reflecting the dynamic evolution of the global workforce, is the focal point of this study. The objective was to synthesize the existing academic literature on these skills, employing a scientometric approach . This involved a comprehensive analysis of 367 articles from the merged Scopus and Web of Science databases. Science. We observed a significant increase in annual scientific output, with an increase of 87.01% over the last six years. The United States emerged as the most prolific contributor, responsible for 21.61% of total publications and receiving 34.31% of all citations. Using the Tree algorithm of Science (ToS), we identified fundamental contributions within this domain. The ToS outlined three main research streams: the convergence of gender, technology, and automation; defining elements of future work; and the dualistic impact of AI on work, seen as both a threat and an opportunity. Furthermore, our study explored the effects of automation on quality of life, the evolving meaning of work, and the emergence of new skills. A critical analysis was also conducted on how to balance technology with humanism, addressing challenges and strategies in workforce automation. This study offers a comprehensive scientometric view of new-age professions, highlighting the most important trends, challenges, and opportunities in this rapidly evolving field.
Artificial intelligence chatbots can be used to conduct research effectively and efficiently in the fifth industrial revolution. Artificial intelligence chatbots are software applications that utilize artificial intelligence technologies to assist researchers in various aspects of the research process. These chatbots are specifically designed to understand researchers’ inquiries, provide relevant information, and perform tasks related to data collection, analysis, literature review, collaboration, and more. The purpose of this study is to investigate the use of artificial intelligence chatbots for conducting research in the fifth industrial revolution. This qualitative study adopts content analysis as its research methodology, which is grounded in literature review incorporating insights from the researchers’ experiences with utilizing artificial intelligence. The findings reveal that researchers can use artificial intelligence chatbots to produce quality research. Researchers are exposed to various types of artificial intelligence chatbots that can be used to conduct research. Examples are information chatbots, question and answer chatbots, survey chatbots, conversational agents, peer review chatbots, personalised learning chatbots and language translation chatbots. Artificial intelligence chatbots can be used to perform functions such as literature review, data collection, writing assistance and peer review assistance. However, artificial intelligence chatbots can be biased, lack data privacy and security, limited in creativity and critical thinking. Researchers must be transparent and take in consideration issues of informed content and data privacy and security when using artificial intelligence chatbots. The study recommends a framework on artificial intelligence chatbots researchers can use to conduct research in the fifth industrial revolution.
This study employs a transfer matrix, dynamic degree, stability index, and the PLUS model to analyze the spatiotemporal changes in forest land and their driving factors in Yibin City from 2000 to 2022. The results reveal the following: (1) The land use in Yibin City is predominantly characterized by cultivated land and forest land (accounting for over 95% of the total area). The area of cultivated land initially increased and then decreased, while forest land continued to decline and construction land expanded significantly. The rate of forest land loss has slowed (with the dynamic degree decreasing from −0.62% to −0.04%), and ecosystem stability has improved (the F-value increased from 2.27 to 2.9). The conversion of cultivated land to forest land is the primary driver of forest recovery, whereas the conversion of forest land to cultivated land is the main cause of reduction; (2) cultivated land is concentrated in the central and northeastern regions, while forest land is distributed in the western and southern mountainous areas. Construction land is predominantly located in urban areas and along transportation routes. Areas of forest land reduction are mainly found in the central and southern regions with rapid economic development, while areas of forest land increase are concentrated in high-altitude zones or key ecological protection areas. Stable forest land is distributed in the western and southern ecological conservation zones; (3) changes in forest land are primarily influenced by annual precipitation, elevation, and distance to rivers. Road accessibility and GDP have significant impacts, while slope, annual average temperature, and population density exert moderate influences. Distance to railways, aspect, and soil type have relatively minor effects. The findings of this study provide a scientific basis for the sustainable management of forest resources and ecological conservation in Yibin City.
The sustainable development of Madeira Island necessitates the implementation of more precise and targeted planning strategies to address its regional challenges. Given the urgency of this issue within the context of sustainability, planning approaches must be grounded in and reinforced by a comprehensive array of thematic studies to fully grasp the complexities involved. This research leverages Geographic Information Systems (GIS) to analyze land use and occupancy patterns and their evolution within the municipality of Machico on Madeira Island. The study provides a nuanced perspective on the urban structure’s stagnation in the region, while concurrently highlighting the dynamic shifts in agricultural practices. Furthermore, it elucidates the transformation of predominant native vegetation within the municipality from 1990 to 2018. Notably, the research underscores the alarming decline in native vegetation due to anthropogenic activities, emphasizing the need for more rigorous monitoring by regional authorities to safeguard and preserve these valuable landscapes, habitats, and ecosystems.
This project analyzes the evolution of the manufacturing sector in Portugal from 2009 to 2021, focusing on the variations in the number of active companies across various subcategories, such as food, textiles, and metal product industries. The goal of this analysis is to understand the dynamics of growth and contraction within each sector, providing insights for companies to adjust their market and operational strategies. Key objectives include analyzing the overall evolution in the number of companies, identifying subcategories with notable changes, and providing a comprehensive analysis of observed trends and patterns. The study is based on data from PORDATA 2024, and the research employs temporal trend analysis, linear and quadratic regression, and the Pareto representation to identify patterns of growth and decline. By comparing annual data, the project uncovers periods of growth and decline, allowing for a deeper understanding of the sector’s dynamics. The findings also highlight variations in periods of economic crises and during the Covid-19 pandemic, and recommendations for action are presented to support businesses resilience and continuity. These results are valuable for companies within the manufacturing sectors analyzed and policy makers, guiding strategic decisions to navigate the complexities of the market dynamics and to ensuring long-term organizational sustainable success.
Copyright © by EnPress Publisher. All rights reserved.