Zinc oxide (ZnO) hollow spheres are gaining attention due to their exceptional properties and potential applications in various fields. This study investigates the impact of different zinc precursors Zinc Chloride (ZnCl2), Zinc Nitrate [Zn(NO3)2], and Zinc Acetate [Zn(CH3COO)2] on the hydrothermal synthesis of ZnO hollow spheres. A comprehensive set of characterization techniques, including Field Emission Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), Thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analysis, was utilized to assess the structural and morphological features of the synthesized materials. Our findings demonstrate that all samples exhibit a high degree of crystallinity with a wurtzite structure, and crystallite sizes range between 34 to 91 nm. Among the different precursors, ZnO derived from Zinc Nitrate showed markedly higher porosity and a well-defined mesoporous structure than those obtained from Zinc Acetate and Zinc Chloride. This research underscores the significance of precursor selection in optimizing the properties of ZnO hollow spheres, ultimately contributing to advancements in the design and application of ZnO-based nanomaterials.
Recent research efforts have increasingly concentrated on creating innovative biomaterials to improve bone tissue engineering techniques. Among these, hybrid nanomaterials stand out as a promising category of biomaterials. In this study, we present a straightforward, cost-efficient, and optimized hydrothermal synthesis method to produce high-purity Ta-doped potassium titanate nanofibers. Morphological characterizations revealed that Ta-doping maintained the native crystal structure of potassium titanate, highlighting its exciting potential in bone tissue engineering.
Due to the short cost-effective heat transportation distance, the existing geothermal heating technologies cannot be used to develop deep hydrothermal-type geothermal fields situated far away from urban areas. To solve the problem, a new multi-energy source coupling a low-temperature sustainable central heating system with a multifunctional relay energy station is put forward. As for the proposed central heating system, a compression heat pump integrated with a heat exchanger in the heating substation and a gas-fired water/lithium bromide single-effect absorption heat pump in the multifunctional relay energy station are used to lower the return temperature of the primary network step by step. The proposed central heating system is analyzed using thermodynamics and economics, and matching relationships between the design temperature of the return water and the main line length of the primary network are discussed. The studied results indicate that, as for the proposed central heating system, the cost-effective main line length of the primary network can approach 33.8 km, and the optimal design return temperature of the primary network is 23 ℃. Besides, the annual coefficient of performance and annual energy efficiency of the proposed central heating system are about 3.01 and 42.7%, respectively.
In view of the large energy consumption of the regeneration process in the chemical absorption decarburization process, on the basis of the enrichment classification flow process, the nanoscale ceramic film is used as a new heat exchanger between the enriched liquid and the regeneration gas. The porous ceramic film is capable of coupling thermal-mass transfer to effectively recover part of the water vapor and the heat carried in the regeneration gas, so as to reduce the regenerative energy consumption of the system. The effects of parameters such as regeneration temperature, flow rate, molar fraction of water vapor, and MEA enrichment temperature, flow rate, and MEA concentration of shunt on the hydrothermal recovery effect of ceramic membranes of different pore sizes and lengths were studied by using the heat recovery flux and water recovery rate as the indicators. The results show that the hydrothermal recovery performance of the ceramic membrane increases with the increase of MEA enrichment flow, but decreases significantly with the increase of the enrichment temperature. At the same time, with the increase of regenerative gas velocity and the molar fraction of water vapor in the regenerative gas, the heat recovery flux will increase. The heat recovery performance of the 10 nm ceramic membrane is better than that of the 20 nm ceramic membrane.
This article explored mineral resources and their relation to structural settings in the Central Eastern Desert (CED) of Egypt. Integration of remote sensing (RS) with aeromagnetic (AMG) data was conducted to generate a mineral predictive map. Several image transformation and enhancement techniques were performed to Landsat Operational Land Imager (OLI) and Shuttle Radar Topography Mission (SRTM) data. Using band ratios and oriented principal component analysis (PCA) on OLI data allowed delineating hydrothermal alteration zones (HAZs) and highlighted structural discontinuity. Moreover, processing of the AMG using Standard Euler deconvolution and residual magnetic anomalies successfully revealed the subsurface structural features. Zones of hydrothermal alteration and surface/subsurface geologic structural density maps were combined through GIS technique. The results showed a mineral predictive map that ranked from very low to very high probability. Field validation allowed verifying the prepared map and revealed several mineralized sites including talc, talc-schist, gold mines and quartz veins associated with hematite. Overall, integration of RS and AMG data is a powerful technique in revealing areas of potential mineralization involved with hydrothermal processes.
Copyright © by EnPress Publisher. All rights reserved.