The expanding adoption of artificial intelligence systems across high-impact sectors has catalyzed concerns regarding inherent biases and discrimination, leading to calls for greater transparency and accountability. Algorithm auditing has emerged as a pivotal method to assess fairness and mitigate risks in applied machine learning models. This systematic literature review comprehensively analyzes contemporary techniques for auditing the biases of black-box AI systems beyond traditional software testing approaches. An extensive search across technology, law, and social sciences publications identified 22 recent studies exemplifying innovations in quantitative benchmarking, model inspections, adversarial evaluations, and participatory engagements situated in applied contexts like clinical predictions, lending decisions, and employment screenings. A rigorous analytical lens spotlighted considerable limitations in current approaches, including predominant technical orientations divorced from lived realities, lack of transparent value deliberations, overwhelming reliance on one-shot assessments, scarce participation of affected communities, and limited corrective actions instituted in response to audits. At the same time, directions like subsidiarity analyses, human-cent
This study introduces a novel Groundwater Flooding Risk Assessment (GFRA) model to evaluate risks associated with groundwater flooding (GF), a globally significant hazard often overshadowed by surface water flooding. GFRA utilizes a conditional probability function considering critical factors, including topography, ground slope, and land use-recharge to generate a risk assessment map. Additionally, the study evaluates the return period of GF events (GFRP) by fitting annual maxima of groundwater levels to probability distribution functions (PDFs). Approximately 57% of the pilot area falls within high and critical GF risk categories, encompassing residential and recreational areas. Urban sectors in the north and east, containing private buildings, public centers, and industrial structures, exhibit high risk, while developing areas and agricultural lands show low to moderate risk. This serves as an early warning for urban development policies. The Generalized Extreme Value (GEV) distribution effectively captures groundwater level fluctuations. According to the GFRP model, about 21% of the area, predominantly in the city’s northeast, has over 50% probability of GF exceedance (1 to 2-year return period). Urban outskirts show higher return values (> 10 years). The model’s predictions align with recorded flood events (90% correspondence). This approach offers valuable insights into GF threats for vulnerable locations and aids proactive planning and management to enhance urban resilience and sustainability.
Climate change has adverse effects on ecosystems and several socio-economic sectors including health. Indeed, infrastructure, continuity of medical services, and the hospital environment are all directly affected by the effects of climate-related risks. This study aims to describe the observations of the effects of climate change risks on health systems in the Greater Lomé health region of Togo. We used an interview guide and a questionnaire to collect information. The observations allowed us to assess the effects caused by climate risks. According to the results, 84.62% of respondents attest that health centers experience flooding during rainy periods and damage caused by strong winds is noticeable among 76.92% of respondents. More than 25.40% and 61.86% respectively of respondents mention that droughts and floods have effects on health systems. The results of this study will allow health system managers to become aware of how to plan useful actions to facilitate the management of climate-related risks in health facilities in the Greater Lomé health region. In view of all these results, it is necessary that measures be taken to strengthen the resilience of health systems through awareness campaigns and training of actors throughout the health pyramid.
The application of optimization algorithms is crucial for analyzing oil and gas company portfolio and supporting decision-making. The paper investigates the process of optimizing a portfolio of oil and gas projects under economic uncertainty. The literature review explores the advantages of applying various optimizers to models that consider the mean and semi-standard deviations of stochastic multi-year cash flows and revenues. The methods and results of three different optimization algorithms are discussed: ranking and cutting algorithms, linear (Simplex) and evolutionary (genetic) algorithms. Functions of several key performance indicators were used to test these algorithms. The results confirmed that multi-objective optimization algorithms that examine various key performance indicators are used for efficient optimization in oil and gas companies. This paper proposes a multi-criteria optimization model for investment portfolios of oil and gas projects. The model considers the specific features of these projects and is based on the Markowitz portfolio theory and methodological recommendations for project assessment. An example of its practical application to oil and gas projects is also provided.
While extensive research has explored interconnectedness, volatility spillovers, and risk transmission across financial systems, the comparative dynamics between Islamic and conventional banks during crises, particularly in specific regions such as Saudi Arabia, are underexplored. This study investigates risk transmissions and contagion among banks operating in Islamic and conventional modes in the Kingdom of Saudi Arabia. Daily banking stock data spanning November 2018 to November 2023, encompassing two major crises—COVID-19 and the Russian-Ukraine war—were analyzed. Using the frequency TVP-VAR approach, the study reveals that average total connectedness for both banking groups exceeds 50%, with short-run risk transmission dominating over long-term effects. Graphical visualizations highlight time-varying connectedness, driven predominantly by short-run spillovers, with similar patterns observed in both Islamic and conventional banking networks. The main contribution of this paper is the insight that long-term investment strategies are crucial for mitigating potential risks in the Saudi banking system, given its limited diversification opportunities.
Copyright © by EnPress Publisher. All rights reserved.