Hughes AG, Vounaki T, Peach DW, et al. Flood risk from groundwater: examples from a Chalk catchment in southern England. Journal of Flood Risk Management. 2011; 4(3): 143-155. doi: 10.1111/j.1753-318x.2011.01095.x
Abboud JM, Ryan MC, Osborn GD. Groundwater flooding in a river‐connected alluvial aquifer. Journal of Flood Risk Management. 2018; 11(4). doi: 10.1111/jfr3.12334
Macdonald D, Dixon A, Newell A, et al. Groundwater flooding within an urbanised flood plain. Journal of Flood Risk Management. 2011; 5(1): 68-80. doi: 10.1111/j.1753-318x.2011.01127.x
Al-Sefry SA, Şen Z. Groundwater Rise Problem and Risk Evaluation in Major Cities of Arid Lands – Jedddah Case in Kingdom of Saudi Arabia. Water Resources Management. 2006; 20(1): 91-108. doi: 10.1007/s11269-006-4636-2
Mancini CP, Lollai S, Volpi E, et al. Flood Modeling and Groundwater Flooding in Urbanized Reclamation Areas: The Case of Rome (Italy). Water. 2020; 12(7): 2030. doi: 10.3390/w12072030
Kreibich H, Thieken AH. Assessment of damage caused by high groundwater inundation. Water Resources Research. 2008; 44(9). doi: 10.1029/2007wr006621
Mohammadzadeh H, Dadgar MA, Nassery H. Prediction of the effect of water supplying from Shirindare dam on the Bojnourd aquifer using MODFLOW2000. Water Resources. 2017; 44(2): 216-225. doi: 10.1134/s009780781702004x
Gotkowitz MB, Attig JW, McDermott T. Groundwater flood of a river terrace in southwest Wisconsin, USA (Portuguese). Hydrogeology Journal. 2014; 22(6): 1421-1432. doi: 10.1007/s10040-014-1129-x
Jerome Morrissey P, McCormack T, Naughton O, et al. Modelling groundwater flooding in a lowland karst catchment. Journal of Hydrology. 2020; 580: 124361. doi: 10.1016/j.jhydrol.2019.124361
European Union Directive. Directive 2004/18/EC of the European Parliament and of the council on the assessment and management of flood risks. Official Journal of the European Union; 2007.
Sommer T, Karpf C, Ettrich N, et al. Coupled modelling of subsurface water flux for an integrated flood risk management. Natural Hazards and Earth System Sciences. 2009; 9(4): 1277-1290. doi: 10.5194/nhess-9-1277-2009
Fürst J, Bichler A, Konecny F. Regional Frequency Analysis of Extreme Groundwater Levels. Groundwater. 2014; 53(3): 414-423. doi: 10.1111/gwat.12223
Habel S, Fletcher CH, Rotzoll K, et al. Development of a model to simulate groundwater inundation induced by sea-level rise and high tides in Honolulu, Hawaii. Water Research. 2017; 114: 122-134. doi: 10.1016/j.watres.2017.02.035
Colombo L, Gattinoni P, Scesi L. Stochastic modelling of groundwater flow for hazard assessment along the underground infrastructures in Milan (northern Italy). Tunnelling and Underground Space Technology. 2018; 79: 110-120. doi: 10.1016/j.tust.2018.05.007
Allocca V, Di Napoli M, Coda S, et al. A novel methodology for Groundwater Flooding Susceptibility assessment through Machine Learning techniques in a mixed-land use aquifer. Science of The Total Environment. 2021; 790: 148067. doi: 10.1016/j.scitotenv.2021.148067
Naughton O, Johnston PM, McCormack T, et al. Groundwater flood risk mapping and management: examples from a lowland karst catchment in Ireland. Journal of Flood Risk Management. 2015; 10(1): 53-64. doi: 10.1111/jfr3.12145
Coda S, Tufano R, Calcaterra D, et al. Groundwater flooding hazard assessment in a semi-urban aquifer through probability modelling of surrogate data. Journal of Hydrology. 2023; 621: 129659. doi: 10.1016/j.jhydrol.2023.129659
Ehya F, Marbouti Z. Hydrochemistry and contamination of groundwater resources in the Behbahan plain, SW Iran. Environmental Earth Sciences. 2016; 75(6). doi: 10.1007/s12665-016-5320-3
Croneborg L, Saito K, Matera M, et al. Digital Elevation Models. World Bank, Washington, DC; 2020.
Altafi Dadgar M, Nakhaei M, Porhemmat J, et al. Transient potential groundwater recharge under surface irrigation in semiarid environment: An experimental and numerical study. Hydrological Processes. 2018; 32(25): 3771-3783. doi: 10.1002/hyp.13287
Dadgar MA, Nakhaei M, Porhemmat J, et al. Potential groundwater recharge from deep drainage of irrigation water. Science of The Total Environment. 2020; 716: 137105. doi: 10.1016/j.scitotenv.2020.137105
Nguyen HH, Peche A, Venohr M. Modelling of sewer exfiltration to groundwater in urban wastewater systems: A critical review. Journal of Hydrology. 2021; 596: 126130. doi: 10.1016/j.jhydrol.2021.126130
Das MM, Das Saikia M. Hydrology. Prentice-Hall Of India Pvt. Limited; 2009.
Chebanov O, Zadniprovska. Zoning groundwater flooding risks in the cities and urban agglomeration areas of Ukraine. In: Proceedings of the International Union of Geodesy and Geophysics; 2011.
Cunnane C. Statistical Distributions for Flood Frequency Analysis. Secretariat of the World Meteorological Organization; 1989.
Guerriero L, Ruzza G, Guadagno FM, et al. Flood hazard mapping incorporating multiple probability models. Journal of Hydrology. 2020; 587: 125020. doi: 10.1016/j.jhydrol.2020.125020
Hansen A. The Three Extreme Value Distributions: An Introductory Review. Frontiers in Physics. 2020; 8. doi: 10.3389/fphy.2020.604053
Solaiman TA. Uncertainty estimation of extreme precipitations under climate change: A non-parametric approach [PhD thesis]. The University of Western Ontario; 2011.
Sozer B, Kocaman S, Nefeslioglu HA, et al. Preliminary investigations on flood susceptibility mapping in ankara (turkey) using modified analytical hierarchy process (M-AHP). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2018; XLII-5: 361-365. doi: 10.5194/isprs-archives-xlii-5-361-2018
Elassal M. Geomorphological of hazard maps in ABAH Urban, KSA. Bulletin de la Société de Géographie d’Egypte. 2019; 92(1): 53-75. doi: 10.21608/bsge.2019.90374
Darabi H, Choubin B, Rahmati O, et al. Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology. 2019; 569: 142-154. doi: 10.1016/j.jhydrol.2018.12.002
Rafiei-Sardooi E, Azareh A, Choubin B, et al. Evaluating urban flood risk using hybrid method of TOPSIS and machine learning. International Journal of Disaster Risk Reduction. 2021; 66: 102614. doi: 10.1016/j.ijdrr.2021.102614
Taromideh F, Fazloula R, Choubin B, et al. Urban Flood-Risk Assessment: Integration of Decision-Making and Machine Learning. Sustainability. 2022; 14(8): 4483. doi: 10.3390/su14084483
Gaitan S, ten Veldhuis M claire, van de Giesen N. Spatial Distribution of Flood Incidents Along Urban Overland Flow-Paths. Water Resources Management. 2015; 29(9): 3387-3399. doi: 10.1007/s11269-015-1006-y
Rincón D, Khan UT, Armenakis C. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences. 2018; 8(8): 275. doi: 10.3390/geosciences8080275