Static atomic charges affect key ground-state parameters of quasi-planar boron clusters Bn, n ≤ 20, which serve as building blocks of borophenes and other two-dimensional boron-based materials promising for various advanced applications. Assuming that the outer valence shells partial electron density of the constituent B atoms are shared between them proportionally to their coordination numbers, the static atomic charges in small planar boron clusters in the electrically neutral and positively and negatively singly charged states are estimated to be in the ranges of –0.750e (B70) to +0.535e (B200), –0.500e (B7+, B8+, and B9+) to +0.556e (B17+), and –1.000e (B7–) to +0.512e (B20–), respectively.
Open-source software (OSS) has emerged as a transformative tool whose implementation has the potential to modernise many libraries around the world in the digital age. OSS is a type of software which permits its users to inspect, share, modify, and enhance through its freely accessed source code. The accessibility and openness of the source code permits users to manipulate, change, and improve the way in which a piece of software, program, or application works. OSS solutions therefore provide cost-effective alternatives that enable libraries to enhance their technological infrastructure without being constrained by proprietary systems. Hence, many countries have initiated and formulated policies and legislative frameworks to support the implementation and use of OSS library solutions such as DSpace, Alfresco, and Greenstone. The purpose of the study reported on was to investigate the leveraging of OSS to modernise public libraries in South Africa. Content analysis was adopted as the research methodology for this qualitative study, which was based on a literature review integrating insights from the researchers’ experiences with the use of OSS in libraries The findings of the study reveal that the use of OSS has the potential to modernise public libraries, especially those located outside cities or urban areas. These libraries are often less well equipped with the necessary technology infrastructure to meet the demands of the digital age, such as online books and open access materials. The study culminated in an OSS framework that may be implemented to modernise public libraries. This framework may help public libraries to integrate OSS solutions and further allow users access to digital services.
In the domain of public management, the concept of agency refers to the capacity of individuals or groups to effectively utilise power and resources to achieve certain goals. The formation of agency is significantly influenced by the external institutional environment and how actors perceive social structures. Thus, the agency to win a game can be generated as players familiarise with the game’s operations and understand the story line. But beyond this, there are also players who make mods on a non-profit basis, modifying the game’s program to meet the needs of others. mods, as a form of patching, are different from other fan-created mediated texts. Therefore, studying the agency in gaming community management, where both players and developers interact, offers valuable insights for understanding how to promote public participation, innovation, and effective governance in the context of public management. This approach bridges the gap between the digital world and real-world public management practices.
The tunable conduction of coumarin-based composites has attracted considerable attention in a wide range of applications due to their unique chemical structures and fascinating properties. The incorporation of graphene oxide (GO) further enhances coumarin properties, including strong fluorescence, reversible photodimerization, and good thermal stability, expanding their potential use in advanced technological applications. This review describes the developmental evolution from GO, GO-polymer, and coumarin-based polymer to the coumarin-GO composite, concerning their synthesis, characterization, unique properties, and wide applications. We especially highlight the outstanding progress in the synthesis and structural characteristics along with their physical and chemical properties. Therefore, understanding their structure-property relations is very important to acquire scientific and technological information for developing the advanced materials with interesting performance in optoelectronic and energy applications as well as in the biomedical field. Given the expertise of influenced factors (e.g., dispersion quality, functionalization, and loading level) on the overall extent of enhancement, future research directions include optimizing coumarin-GO composites by varying the nanofiller types and coumarin compositions, which could significantly promote the development of next-generation polymer composites for specific applications.
Copyright © by EnPress Publisher. All rights reserved.