Journal Browser
Search
Evaluation of static atomic charges in elementary nanostructures: Boron planar clusters
Tornike Odishvili
Levan Chkhartishvili
Characterization and Application of Nanomaterials 2025, 8(3); https://doi.org/10.24294/can11815
Submitted:23 Jun 2025
Accepted:27 Nov 2025
Published:28 Nov 2025
Abstract

Static atomic charges affect key ground-state parameters of boron quasi-planar clusters Bnn ≤ 20, which serve as building blocks of borophenes and other two-dimensional boron-based materials promising for various advanced applications. Assuming that the outer valence shells partial electron density of the constituent B atoms are shared between them proportionally to their coordination numbers, the static atomic charges in small boron planar clusters in the electrically neutral and positively and negatively singly charged states are estimated to be in the ranges of –0.750e (B70) to +0.535e (B200), –0.500e (B7+, B8+, and B9+) to +0.556e (B17+), and –1.000e (B7) to +0.512e (B20), respectively.

References
1. Kiran B, Bulusu S, Zhai HJ, et al. Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proceedings of the National Academy of Sciences. 2005; 102(4): 961-964. doi: 10.1073/pnas.0408132102
2. Alexandrova AN, Boldyrev AI, Zhai HJ, et al. All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coordination Chemistry Reviews. 2006; 250(21-22): 2811-2866. doi: 10.1016/j.ccr.2006.03.032
3. Li WL, Chen Q, Tian WJ, et al. The B35 Cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene. Journal of the American Chemical Society. 2014; 136(35): 12257-12260. doi: 10.1021/ja507235s
4. Becker R, Chkhartishvili L, Martin P. Boron, the new graphene? Vacuum Technology & Coating. 2015. 16(4): 38-44.
5. Chkhartishvili L. Ch. 7: All-boron nanostructures. CRC Concise Encyclopedia of Nanotechnology CRC Press; 2016: 53-69.
6. Tian Y, Guo Z, Zhang T, et al. Inorganic boron-based nanostructures: Synthesis, optoelectronic properties, and prospective applications. Nanomaterials. 2019; 9(4): 538. doi: 10.3390/nano9040538
7. Li D, Gao J, Cheng P, et al. 2D boron sheets: Structure, growth, and electronic and thermal transport properties. Advanced Functional Materials. 2019; 30(8): 1904349. doi: 10.1002/adfm.201904349
8. Boustani I. Molecular Modelling and Synthesis of Nanomaterials. Springer International Publishing; 2020. doi: 10.1007/978-3-030-32726-2
9. Matsuda I, Wu K, eds. 2D Boron: Boraphene, Borophene, Boronene. Springer International Publishing; 2021. doi: 10.1007/978-3-030-49999-0
10. Chkhartishvili L. Relative stability of boron planar clusters in diatomic molecular model. Molecules. 2022; 27(5): 1469. doi: 10.3390/molecules27051469
11. Odishvili T, Chkhartishvili L. All-boron planar clusters with electric dipole moment. Solid State Sciences. 2025; 160: 107833. doi: 10.1016/j.solidstatesciences.2025.107833
12. Chkhartishvili L. Quasi-planar elemental clusters in pair interactions approximation. Open Physics. 2016; 14(1): 617-620. doi: 10.1515/phys-2016-0070
13. Chkhartishvili L. Relative stability of planar clusters B11, B12, and B13 in neutral- and charged-states. Characterization and Application of Nanomaterials. 2020; 3(2): 73-80. doi: 10.24294/can.v3i2.761
14. Chkhartishvili L. Nanoclusters binding energy in diatomic model. International Journal of Advanced Nano Computing and Analytics. 2021; 1(1): 80-83. doi: 10.61797/ijanca.v1i1.109
15. Chkhartishvili L. Effect of static atomic charges on small elemental clusters: Evidence from boron. International Journal of Advanced Nano Computing and Analytics. 2023; 2(1): 13-21. doi: 10.61797/ijanca.v2i1.150
© 2025 by the EnPress Publisher, LLC. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Copyright © by EnPress Publisher. All rights reserved.

TOP